Visible to the public Biblio

Found 256 results

Filters: Keyword is Data security  [Clear All Filters]
2022-11-25
Tadeo, Diego Antonio García, John, S.Franklin, Bhaumik, Ankan, Neware, Rahul, Yamsani, Nagendar, Kapila, Dhiraj.  2021.  Empirical Analysis of Security Enabled Cloud Computing Strategy Using Artificial Intelligence. 2021 International Conference on Computing Sciences (ICCS). :83—85.
Cloud Computing (CC) has emerged as an on-demand accessible tool in different practical applications such as digital industry, academics, manufacturing, health sector and others. In this paper different security threats faced by CC are discussed with suitable examples. Moreover, an artificial intelligence based security enabled CC is also discussed based on suitable empirical data. It is found that an artificial neural network (ANN) is an effective system to detect the level of risk factors associated with CC along with mitigating those risk issues with appropriate algorithms. Hence, it provides a desired level of protection against cyber attacks, internal confidential threats and external threat of data theft from a cloud computing system. Levenberg–Marquardt (LMBP) algorithms are also found as a significant tool to estimate the level of security performance around a cloud computing system. ANN is used to improve the performance level of data security across a cloud computing network and make it security enabled to ensure a protected data transmission to clients associated with the system.
2022-11-18
Banasode, Praveen, Padmannavar, Sunita.  2021.  Evaluation of Performance for Big Data Security Using Advanced Cryptography Policy. 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS). 1:1—5.
The revolution caused by the advanced analysis features of Internet of Things and big data have made a big turnaround in the digital world. Data analysis is not only limited to collect useful data but also useful in analyzing information quickly. Therefore, most of the variants of the shared system based on the parallel structural model are explored simultaneously as the appropriate big data storage library stimulates researchers’ interest in the distributed system. Due to the emerging digital technologies, different groups such as healthcare facilities, financial institutions, e-commerce, food service and supply chain management generate a surprising amount of information. Although the process of statistical analysis is essential, it can cause significant security and privacy issues. Therefore, the analysis of data privacy protection is very important. Using the platform, technology should focus on providing Advanced Cryptography Policy (ACP). This research explores different security risks, evolutionary mechanisms and risks of privacy protection. It further recommends the post-statistical modern privacy protection act to manage data privacy protection in binary format, because it is kept confidential by the user. The user authentication program has already filed access restrictions. To maintain this purpose, everyone’s attitude is to achieve a changing identity. This article is designed to protect the privacy of users and propose a new system of restoration of controls.
2022-10-16
LaMalva, Grace, Schmeelk, Suzanna.  2020.  MobSF: Mobile Health Care Android Applications Through The Lens of Open Source Static Analysis. 2020 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–4.
Data security has become an increasing concern with rampant data security regulation changes and the rampant deployment of technology. The necessity to lock down user data has never been greater. This research contributes to the secure software development of Android applications by identifying data processing concerns following the guidelines put forth by the Open Web Application Security Project “(OWASP) Mobile Top 10.” We found that 43.62% of the applications contained at least one security violation. We will be using an open source tool static analysis tool, MobSF, to review the security of 200 health related Android applications. The security of healthcare related applications should be given special attention, as they store and process highly sensitive information such as blood pressures, pulse rate, body photos, mental-state, OBGYN status, and sleep patterns. Partial automation techniques were utilized. This paper also suggests possible security remediations for the identified security concerns.
2022-09-30
Asare, Bismark Tei, Quist-Aphetsi, Kester, Nana, Laurent, Simpson, Grace.  2021.  A nodal Authentication IoT Data Model for Heterogeneous Connected Sensor Nodes Within a Blockchain Network. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :65–71.
Modern IoT infrastructure consists of different sub-systems, devices, applications, platforms, varied connectivity protocols with distinct operating environments scattered across different subsystems within the whole network. Each of these subsystems of the global system has its peculiar computational and security challenges. A security loophole in one subsystem has a directly negative impact on the security of the whole system. The nature and intensity of recent cyber-attacks within IoT networks have increased in recent times. Blockchain technology promises several security benefits including a decentralized authentication mechanism that addresses almost readily the challenges with a centralized authentication mechanism that has the challenges of introducing a single point of failure that affects data and system availability anytime such systems are compromised. The different design specifications and the unique functional requirements for most IoT devices require a strong yet universal authentication mechanism for multimedia data that assures an additional security layer to IoT data. In this paper, the authors propose a decentralized authentication to validate data integrity at the IoT node level. The proposed mechanism guarantees integrity, privacy, and availability of IoT node data.
2022-08-12
Telghamti, Samira, Derdouri, Lakhdhar.  2021.  Towards a Trust-based Model for Access Control for Graph-Oriented Databases. 2021 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS). :1—3.
Privacy and data security are critical aspects in databases, mainly when the latter are publically accessed such in social networks. Furthermore, for advanced databases, such as NoSQL ones, security models and security meta-data must be integrated to the business specification and data. In the literature, the proposed models for NoSQL databases can be considered as static, in the sense where the privileges for a given user are predefined and remain unchanged during job sessions. In this paper, we propose a novel model for NoSQL database access control that we aim that it will be dynamic. To be able to design such model, we have considered the Trust concept to compute the reputation degree for a given user that plays a given role.
2022-08-03
Dong, Wenyu, Yang, Bo, Wang, Ke, Yan, Junzhi, He, Shen.  2021.  A Dual Blockchain Framework to Enhance Data Trustworthiness in Digital Twin Network. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). :144—147.
Data are the basis in Digital Twin (DT) to set up bidirectional mapping between physical and virtual spaces, and realize critical environmental sensing, decision making and execution. Thus, trustworthiness is a necessity in data content as well as data operations. A dual blockchain framework is proposed to realize comprehensive data security in various DT scenarios. It is highly adaptable, scalable, evolvable, and easy to be integrated into Digital Twin Network (DTN) as enhancement.
2022-08-02
Zhao, Chen, Yin, Jiaqi, Zhu, Huibiao, Li, Ran.  2021.  Modeling and Verifying Ticket-Based Authentication Scheme for IoT Using CSP. 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). :845—852.
Internet of Things (IoT) connects various nodes such as sensor devices. For users from foreign networks, their direct access to the data of sensor devices is restricted because of security threats. Therefore, a ticket-based authentication scheme was proposed, which can mutually authenticate a mobile device and a sensor device. This scheme with new features fills a gap in IoT authentication, but the scheme has not been verified formally. Hence, it is important to study the security and reliability of the scheme from the perspective of formal methods.In this paper, we model this scheme using Communicating Sequential Processes (CSP). Considering the possibility of key leakage caused by security threats in IoT networks, we also build models where one of the keys used in the scheme is leaked. With the model checker Process Analysis Toolkit (PAT), we verify four properties (deadlock freedom, data availability, data security, and data authenticity) and find that the scheme cannot satisfy the last two properties with key leakage. Thus, we propose two improved models. The verification results show that the first improved model can guarantee data security, and the second one can ensure both data security and data authenticity.
2022-07-29
Badran, Sultan, Arman, Nabil, Farajallah, Mousa.  2021.  An Efficient Approach for Secure Data Outsourcing using Hybrid Data Partitioning. 2021 International Conference on Information Technology (ICIT). :418—423.
This paper presents an implementation of a novel approach, utilizing hybrid data partitioning, to secure sensitive data and improve query performance. In this novel approach, vertical and horizontal data partitioning are combined together in an approach that called hybrid partitioning and the new approach is implemented using Microsoft SQL server to generate divided/partitioned relations. A group of proposed rules is applied to the query request process using query binning (QB) and Metadata of partitioning. The proposed approach is validated using experiments involving a collection of data evaluated by outcomes of advanced stored procedures. The suggested approach results are satisfactory in achieving the properties of defining the data security: non-linkability and indistinguishability. The results of the proposed approach were satisfactory. The proposed novel approach outperforms a well-known approach called PANDA.
Sharma, Kavya, Chakravarti, Praveen Kumar, Sharma, Rohan, Parashar, Kanishq, Pal, Nisha.  2021.  A Review on Internet of Things Based Door Security. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—4.
{On considering workplace thefts as a major problem, there is a requirement of designing a vandal proof door hardware and locking mechanism for ensuring the security of our property. So the door lock system with extra security features with a user friendly cost is suggested in this paper. When a stranger comes at the door, he/she has to pass three security levels for unlocking the solenoid locks present at the door and if he fails to do so, the door will remain locked. These three levels are of three extraordinary security features as one of them is using Fingerprint sensor, second is using a knocking pattern, and the last lock is unlocked by the preset pin/pattern entered by the user. Since, in addition to these features, there is one more option for the case of appearing of guest at the door and that is the Image capturing using web-camera present at the door and here the owner of the house is able to unlock all the locks if he wants the guest to enter the home. This all will be monitored by Node MCU}.
2022-07-15
Sánchez, Ricardo Andrés González, Bernal, Davor Julián Moreno, Parada, Hector Dario Jaimes.  2021.  Security assessment of Nosql Mongodb, Redis and Cassandra database managers. 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1—7.
The advancement of technology in the creation of new tools to solve problems such as information storage generates proportionally developing methods that search for security flaws or breaches that compromise said information. The need to periodically generate security reports on database managers is given by the complexity and number of attacks that can be carried out today. This project seeks to carry out an evaluation of the security of NoSQL database managers. The work methodology is developed according to the order of the objectives, it begins by synthesizing the types of vulnerabilities, attacks and protection schemes limited to MongoDB, Redis and Apache Cassandra. Once established, a prototype of a web system that stores information with a non-relational database will be designed on which a series of attacks defined by a test plan will be applied seeking to add, consult, modify or eliminate information. Finally, a report will be presented that sets out the attacks carried out, the way in which they were applied, the results, possible countermeasures, security advantages and disadvantages for each manager and the conclusions obtained. Thus, it is possible to select which tool is more convenient to use for a person or organization in a particular case. The results showed that MongoDB is more vulnerable to NoSQL injection attacks, Redis is more vulnerable to attacks registered in the CVE and that Cassandra is more complex to use but is less vulnerable.
2022-07-14
Ilias, Shaik Mohammed, Sharmila, V.Ceronmani.  2021.  Recent Developments and Methods of Cloud Data Security in Post-Quantum Perspective. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1293—1300.
Cloud computing has changed the paradigm of using computing resources. It has shifted from traditional storage and computing to Internet based computing leveraging economy of scale, cost saving, elimination of data redundancy, scalability, availability and regulatory compliance. With these, cloud also brings plenty of security issues. As security is not a one-time solution, there have been efforts to investigate and provide countermeasures. In the wake of emerging quantum computers, the aim of post-quantum cryptography is to develop cryptography schemes that are secure against both classical computers and quantum computers. Since cloud is widely used across the globe for outsourcing data, it is essential to strive at providing betterment of security schemes from time to time. This paper reviews recent development, methods of cloud data security in post-quantum perspectives. It provides useful insights pertaining to the security schemes used to safeguard data dynamics associated with cloud computing. The findings of this paper gives directions for further research in pursuit of more secure cloud data storage and retrieval.
2022-07-12
Özdemir, Durmuş, Çelik, Dilek.  2021.  Analysis of Encrypted Image Data with Deep Learning Models. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :121—126.
While various encryption algorithms ensure data security, it is essential to determine the accuracy and loss values and performance status in the analyzes made to determine encrypted data by deep learning. In this research, the analysis steps made by applying deep learning methods to encrypted cifar10 picture data are presented practically. The data was tried to be estimated by training with VGG16, VGG19, ResNet50 deep learning models. During this period, the network’s performance was tried to be measured, and the accuracy and loss values in these calculations were shown graphically.
2022-06-30
Ahuja, Bharti, Doriya, Rajesh.  2021.  An Unsupervised Learning Approach for Visual Data Compression with Chaotic Encryption. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—4.
The increased demand of multimedia leads to shortage of network bandwidth and memory capacity. As a result, image compression is more significant for decreasing data redundancy, saving storage space and bandwidth. Along with the compression the next major challenge in this field is to safeguard the compressed data further from the spy which are commonly known as hackers. It is evident that the major increments in the fields like communication, wireless sensor network, data science, cloud computing and machine learning not only eases the operations of the related field but also increases the challenges as well. This paper proposes a worthy composition for image compression encryption based on unsupervised learning i.e. k-means clustering for compression with logistic chaotic map for encryption. The main advantage of the above combination is to address the problem of data storage and the security of the visual data as well. The algorithm reduces the size of the input image and also gives the larger key space for encryption. The validity of the algorithm is testified with the PSNR, MSE, SSIM and Correlation coefficient.
Xiao, Ling, Fang, Xi, Jin, Jifang, Yu, Zifang, Zhou, Yang.  2021.  Chaotic Constellation Masking Encryption Method for Security-enhanced CO-OFDM/OQAM System. 2021 Asia Communications and Photonics Conference (ACP). :1—3.
In this paper, we propose a Chaotic Constellation Masking (CCM) encryption method based on henon mapping to enhance the security of CO-OFDM/OQAM system. Simulation results indicate the capability of the CCM method improving system security.
2022-06-15
Xie, Shuang, Hong, Yujie, Wang, Xiangdie, Shen, Jie.  2021.  Research on Data Security Technology Based on Blockchain Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :26–31.
Blockchain started with Bitcoin, but it is higher than Bitcoin. With the deepening of applied research on blockchain technology, this new technology has brought new vitality to many industries. People admire the decentralized nature of the blockchain and hope to solve the problems caused by the operation of traditional centralized institutions in a more fair and effective way. Of course, as an emerging technology, blockchain has many areas for improvement. This article explains the blockchain technology from many aspects. Starting from the typical architecture of the blockchain, the data structure and system model of the blockchain are first introduced. Then it expounds the development of consensus algorithms and compares typical consensus algorithms. Later, the focus will be on smart contracts and their application platforms. After analyzing some of the challenges currently faced by the blockchain technology, some scenarios where the blockchain is currently developing well are listed. Finally, it summarizes and looks forward to the blockchain technology.
2022-06-14
Vallabhu, Satya Krishna, Maheswari, Nissankararao Uma, Kaveri, Badavath, Jagadeeswari, C..  2021.  Biometric Steganography Using MPV Technique. 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA). :39–43.
Biometric data is prone to attacks and threats from hackers who are professionals in cyber-crimes. Therefore, securing the data is very essential. Steganographic approach, which is a process of concealing data, is proposed as a solution to this. Biometrics are hidden inside other biometrics for safe storage and secure transmission. Also, it is designed to be robust against attacks, and cannot be detected easily. The intention of this paper is to highlight a method of hiding one image in another image by using mid position value(mpv) technique. Here we have to choose the secret biometric on which Arnold transform will be applied resulting in a scrambled version of the secret biometric. This will be enveloped inside cover image which results in a stego-image. Lastly, hidden secret biometric will be decoded from this stego image, which will first result in a scrambled secret biometric. Inverse Arnold Transform will be applied on this to finally result in the decoded secret biometric. The paper further explains the working and processes in detail.
Qureshi, Hifza, Sagar, Anil Kumar, Astya, Rani, Shrivastava, Gulshan.  2021.  Big Data Analytics for Smart Education. 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA). :650–658.
The existing education system, which incorporates school assessments, has some flaws. Conventional teaching methods give students no immediate feedback, also make teachers to spend hours grading repetitive assignments, and aren't very constructive in showing students how to improve in their academics, and also fail to take advantage of digital opportunities that can improve learning outcomes. In addition, since a single teacher has to manage a class of students, it gets difficult to focus on each and every student in the class. Furthermore, with the help of a management system for better learning, educational organizations can now implement administrative analytics and execute new business intelligence using big data. This data visualization aids in the evaluation of teaching, management, and study success metrics. In this paper, there is put forward a discussion on how Data Mining and Data Analytics can help make the experience of learning and teaching both, easier and accountable. There will also be discussion on how the education organization has undergone numerous challenges in terms of effective and efficient teachings, student-performance. In addition development, and inadequate data storage, processing, and analysis will also be discussed. The research implements Python programming language on big education data. In addition, the research adopted an exploratory research design to identify the complexities and requirements of big data in the education field.
2022-06-13
Dutta, Aritra, Bose, Rajesh, Chakraborty, Swarnendu Kumar, Roy, Sandip, Mondal, Haraprasad.  2021.  Data Security Mechanism for Green Cloud. 2021 Innovations in Energy Management and Renewable Resources(52042). :1–4.
Data and veracious information are an important feature of any organization; it takes special care as a like asset of the organization. Cloud computing system main target to provide service to the user like high-speed access user data for storage and retrieval. Now, big concern is data protection in cloud computing technology as because data leaking and various malicious attacks happened in cloud computing technology. This study provides user data protection in the cloud storage device. The article presents the architecture of a data security hybrid infrastructure that protects and stores the user data from the unauthenticated user. In this hybrid model, we use a different type of security model.
Zhang, Jie.  2021.  Research on the Application of Computer Big Data Technology in Cloud Storage Security. 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). :405–409.
In view of the continuous progress of current science and technology, cloud computing has been widely used in various fields. This paper proposes a secure data storage architecture based on cloud computing. The architecture studies the security issues of cloud computing from two aspects: data storage and data security, and proposes a data storage mode based on Cache and a data security mode based on third-party authentication, thereby improving the availability of data, from data storage to transmission. Corresponding protection measures have been established to realize effective protection of cloud data.
Wang, Fengling, Wang, Han, Xue, Liang.  2021.  Research on Data Security in Big Data Cloud Computing Environment. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:1446–1450.
In the big data cloud computing environment, data security issues have become a focus of attention. This paper delivers an overview of conceptions, characteristics and advanced technologies for big data cloud computing. Security issues of data quality and privacy control are elaborated pertaining to data access, data isolation, data integrity, data destruction, data transmission and data sharing. Eventually, a virtualization architecture and related strategies are proposed to against threats and enhance the data security in big data cloud environment.
2022-06-09
Cismas, Alexandru, Matei, Ioana, Popescu, Decebal.  2021.  Condensed Survey On Wearable IoBT Devices. 2021 International Conference on e-Health and Bioengineering (EHB). :1–4.
This document paper presents a critical and condensed analyze on series of devices that are intended for the military field, making an overview analysis of the technical solutions presented and that identifying those aspects that are really important for the military field or that offering a new approach. We currently have a wide range of medical devices that can be adapted for use in the military, but this adaptation must follow some well-defined aspects. A device that does not offer 100% reliability will be difficult to adopt in a military system, where mistakes are not allowed.
2022-06-08
Sun, Yue, Dong, Bin, Chen, Wei, Xu, Xiaotian, Si, Guanlin, Jing, Sen.  2021.  Research on Security Evaluation Technology of Intelligent Video Terminal. 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). :339–342.
The application of intelligent video terminal has spread in all aspects of production and life, such as urban transportation, enterprises, hospitals, banks, and families. In recent years, intelligent video terminals, video recorders and other video monitoring system components are frequently exposed to high risks of security vulnerabilities, which is likely to threaten the privacy of users and data security. Therefore, it is necessary to strengthen the security research and testing of intelligent video terminals, and formulate reinforcement and protection strategies based on the evaluation results, in order to ensure the confidentiality, integrity and availability of data collected and transmitted by intelligent video terminals.
Chen, Lin, Qiu, Huijun, Kuang, Xiaoyun, Xu, Aidong, Yang, Yiwei.  2021.  Intelligent Data Security Threat Discovery Model Based on Grid Data. 2021 6th International Conference on Image, Vision and Computing (ICIVC). :458–463.
With the rapid construction and popularization of smart grid, the security of data in smart grid has become the basis for the safe and stable operation of smart grid. This paper proposes a data security threat discovery model for smart grid. Based on the prediction data analysis method, combined with migration learning technology, it analyzes different data, uses data matching process to classify the losses, and accurately predicts the analysis results, finds the security risks in the data, and prevents the illegal acquisition of data. The reinforcement learning and training process of this method distinguish the effective authentication and illegal access to data.
Yang, Ruxia, Gao, Xianzhou, Gao, Peng.  2021.  Research on Intelligent Recognition and Tracking Technology of Sensitive Data for Electric Power Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :229–234.
Current power sensitive data security protection adopts classification and grading protection. Company classification and grading are mainly in formulating specifications. Data classification and grading processing is carried out manually, which is heavy and time-consuming, while traditional data identification mainly relies on rules for data identification, the level of automation and intelligence is low, and there are many problems in recognition accuracy. Data classification and classification is the basis of data security protection. Sensitive data identification is the key to data classification and classification, and it is also the first step to achieve accurate data security protection. This paper proposes an intelligent identification and tracking technology of sensitive data for electric power big data, which can improve the ability of data classification and classification, help the realization of data classification and classification, and provide support for the accurate implementation of data security capabilities.
Guo, Jiansheng, Qi, Liang, Suo, Jiao.  2021.  Research on Data Classification of Intelligent Connected Vehicles Based on Scenarios. 2021 International Conference on E-Commerce and E-Management (ICECEM). :153–158.
The intelligent connected vehicle industry has entered a period of opportunity, industry data is accumulating rapidly, and the formulation of industry standards to regulate big data management and application is imminent. As the basis of data security, data classification has received unprecedented attention. By combing through the research and development status of data classification in various industries, this article combines industry characteristics and re-examines the framework of industry data classification from the aspects of information security and data assetization, and tries to find the balance point between data security and data value. The intelligent networked automobile industry provides support for big data applications, this article combines the characteristics of the connected vehicle industry, re-examines the data characteristics of the intelligent connected vehicle industry from the 2 aspects as information security and data assetization, and eventually proposes a scene-based hierarchical framework. The framework includes the complete classification process, model, and quantifiable parameters, which provides a solution and theoretical endorsement for the construction of a big data automatic classification system for the intelligent connected vehicle industry and safe data open applications.