Biblio
With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.
Nowadays big data has getting more and more attention in both the academic and the industrial research. With the development of big data, people pay more attention to data security. A significant feature of big data is the large size of the data. In order to improve the encryption speed of the large size of data, this paper uses the deep pipeline and full expansion technology to implement the AES encryption algorithm on FPGA. Achieved throughput of 31.30 Gbps with a minimum latency of 0.134 us. This design can quickly encrypt large amounts of data and provide technical support for the development of big data.
At present, cloud computing technology has made outstanding contributions to the Internet in data unification and sharing applications. However, the problem of information security in cloud computing environment has to be paid attention to and effective measures have to be taken to solve it. In order to control the data security under cloud services, the DS evidence theory method is introduced. The trust management mechanism is established from the source of big data, and a cloud computing security assessment model is constructed to achieve the quantifiable analysis purpose of cloud computing security assessment. Through the simulation, the innovative way of quantifying the confidence criterion through big data trust management and DS evidence theory not only regulates the data credible quantification mechanism under cloud computing, but also improves the effectiveness of cloud computing security assessment, providing a friendly service support platform for subsequent cloud computing service.
Expected and unexpected risks in cloud computing, which included data security, data segregation, and the lack of control and knowledge, have led to some dilemmas in several fields. Among all of these dilemmas, the privacy problem is even more paramount, which has largely constrained the prevalence and development of cloud computing. There are several privacy protection algorithms proposed nowadays, which generally include two categories, Anonymity algorithm, and differential privacy mechanism. Since many types of research have already focused on the efficiency of the algorithms, few of them emphasized the different orientation and demerits between the two algorithms. Motivated by this emerging research challenge, we have conducted a comprehensive survey on the two popular privacy protection algorithms, namely K-Anonymity Algorithm and Differential Privacy Algorithm. Based on their principles, implementations, and algorithm orientations, we have done the evaluations of these two algorithms. Several expectations and comparisons are also conducted based on the current cloud computing privacy environment and its future requirements.
In a computer world, to identify anyone by doing a job or to authenticate by checking their identification and give access to computer. Access Control model comes in to picture when require to grant the permissions to individual and complete the duties. The access control models cannot give complete security when dealing with cloud computing area, where access control model failed to handle the attributes which are requisite to inhibit access based on time and location. When the data outsourced in the cloud, the information holders expect the security and confidentiality for their outsourced data. The data will be encrypted before outsourcing on cloud, still they want control on data in cloud server, where simple encryption is not a complete solution. To irradiate these issues, unlike access control models proposed Attribute Based Encryption standards (ABE). In ABE schemes there are different types like Key Policy-ABE (KP-ABE), Cipher Text-ABE (CP-ABE) and so on. The proposed method applied the access control policy of CP-ABE with Advanced Encryption Standard and used elliptic curve for key generation by using multi stage encryption which divides the users into two domains, public and private domains and shuffling the data base records to protect from inference attacks.
Cloud computing has a major role in the development of commercial systems. It enables companies like Microsoft, Amazon, IBM and Google to deliver their services on a large scale to its users. A cloud service provider manages cloud computing based services and applications. For any organization a cloud service provider (CSP) is an entity which works within it. So it suffers from vulnerabilities associated with organization, including internal and external attacks. So its challenge to organization to secure a cloud service provider while providing quality of service. Attribute based encryption can be used to provide data security with Key policy attribute based encryption (KP-ABE) or ciphertext policy attribute based encryption (CP-ABE). But these schemes has lack of scalability and flexibility. Hierarchical CP-ABE scheme is proposed here to provide fine grained access control. Data security is achieved using encryption, authentication and authorization mechanisms. Attribute key generation is proposed for implementing authorization of users. The proposed system is prevented by SQL Injection attack.