Biblio
Technology development has led to rapid increase in demands for multimedia applications. Due to this demand, digital archives are increasingly used to store these multimedia contents. Cloud is the commonly used archive to store, transmit, receive and share multimedia contents. Cloud makes use of internet to perform these tasks due to which data becomes more prone to attacks. Data security and privacy are compromised. This can be avoided by limiting data access to authenticated users and by hiding the data from cloud services that cannot be trusted. Hiding data from the cloud services involves encrypting the data before storing it into the cloud. Data to be shared with other users can be encrypted by utilizing Cipher Text-Policy Attribute Based Encryption (CP-ABE). CP-ABE is used which is a cryptographic technique that controls access to the encrypted data. The pairing-based computation based on bilinearity is used in ABE due to which the requirements for resources like memory and power supply increases rapidly. Most of the devices that we use today have limited memory. Therefore, an efficient pairing free CP- ABE access control scheme using elliptic curve cryptography has been used. Pairing based computation is replaced with scalar product on elliptic curves that reduces the necessary memory and resource requirements for the users. Even though pairing free CP-ABE is used, it is easier to retrieve the plaintext of a secret message if cryptanalysis is used. Therefore, this paper proposes to combine cryptography with steganography in such a way by embedding crypto text into an image to provide increased level of data security and data ownership for sub-optimal multimedia applications. It makes it harder for a cryptanalyst to retrieve the plaintext of a secret message from a stego-object if steganalysis were not used. This scheme significantly improved the data security as well as data privacy.
Media streaming has largely dominated the Internet traffic and the trend will keep increasing in the next years. To efficiently distribute the media content, Information-Centric Networking (ICN) has attracted many researchers. Since end users usually obtain content from indeterminate caches in ICN, the publisher cannot reinforce data security and access control depending on the caches. Hence, the ability of self-contained protection is important for the cached contents. Attribute-based encryption (ABE) is considered the preferred solution to achieve this goal. However, the existing ABE schemes usually have problems regarding efficiency. The exponentiation in key generation and pairing operation in decryption respectively increases linearly with the number of attributes involved, which make it costly. In this paper, we propose an efficient key-policy ABE with fast key generation and decryption (FKP-ABE). In the key generation, we get rid of exponentiation and only require multiplications/divisions for each attribute in the access policy. And in the decryption, we reduce the pairing operations to a constant number, no matter how many attributes are used. The efficiency analysis indicates that our scheme has better performance than the existing KP-ABE schemes. Finally, we present an implementation framework that incorporates the proposed FKP-ABE with the ICN architecture.
As data security has become one of the most crucial issues in modern storage system/application designs, the data sanitization techniques are regarded as the promising solution on 3D NAND flash-memory-based devices. Many excellent works had been proposed to exploit the in-place reprogramming, erasure and encryption techniques to achieve and implement the sanitization functionalities. However, existing sanitization approaches could lead to performance, disturbance overheads or even deciphered issues. Different from existing works, this work aims at exploring an instantaneous data sanitization scheme by taking advantage of programming disturbance properties. Our proposed design can not only achieve the instantaneous data sanitization by exploiting programming disturbance and error correction code properly, but also enhance the performance with the recycling programming design. The feasibility and capability of our proposed design are evaluated by a series of experiments on 3D NAND flash memory chips, for which we have very encouraging results. The experiment results show that the proposed design could achieve the instantaneous data sanitization with low overhead; besides, it improves the average response time and reduces the number of block erase count by up to 86.8% and 88.8%, respectively.
In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities. In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities.
Confidentiality, authentication, privacy and integrity are the pillars of securing data. The most generic way of providing security is setting up passwords and usernames collectively known as login credentials. Operating systems use different techniques to ensure security of login credentials yet brute force attacks and dictionary attacks along with various other types which leads to success in passing or cracking passwords.The objective of proposed HS model is to enhance the protection of SAM file used by Windows Registry so that the system is preserved from intruders.
Recently, data protection has become increasingly important in cloud environments. The cloud platform has global user information, rich storage resource allocation information, and a fuller understanding of data attributes. At the same time, there is an urgent need for data access control to provide data security, and software-defined network, as a ready-made facility, has a global network view, global network management capabilities, and programable network rules. In this paper, we present an approach, named High-Performance Software-Defined Data Access Network (HP-SDDAN), providing software-defined data access network architecture, global data attribute management and attribute-based data access network. HP-SDDAN combines the excellent features of cloud platform and software-defined network, and fully considers the performance to implement software-defined data access network. In evaluation, we verify the effectiveness and efficiency of HP-SDDAN implementation, with only 1.46% overhead to achieve attribute-based data access control of attribute-based differential privacy.
Increasingly organizations are collecting ever larger amounts of data to build complex data analytics, machine learning and AI models. Furthermore, the data needed for building such models may be unstructured (e.g., text, image, and video). Hence such data may be stored in different data management systems ranging from relational databases to newer NoSQL databases tailored for storing unstructured data. Furthermore, data scientists are increasingly using programming languages such as Python, R etc. to process data using many existing libraries. In some cases, the developed code will be automatically executed by the NoSQL system on the stored data. These developments indicate the need for a data security and privacy solution that can uniformly protect data stored in many different data management systems and enforce security policies even if sensitive data is processed using a data scientist submitted complex program. In this paper, we introduce our vision for building such a solution for protecting big data. Specifically, our proposed system system allows organizations to 1) enforce policies that control access to sensitive data, 2) keep necessary audit logs automatically for data governance and regulatory compliance, 3) sanitize and redact sensitive data on-the-fly based on the data sensitivity and AI model needs, 4) detect potentially unauthorized or anomalous access to sensitive data, 5) automatically create attribute-based access control policies based on data sensitivity and data type.
The traditional logistics transaction lacks a perfect traceability mechanism, and the data information's integrity and safety are not guaranteed in the existing traceability system. In order to solve the problem of main body responsibility caused by the participation of many stakeholders and the uncompleted supervision system in the process of logistics service transaction, This paper proposes a traceability algorithm for logistics service transactions based on blockchain. Based on the logistics service supply chain and alliance chain, the paper firstly investigates the traditional logistics service supply chain, analyzes the existing problems, and combines the structural characteristics of the blockchain to propose a decentralized new logistics service supply chain concept model based on blockchain. Then, using Globe sandara 1 to standardize the physical products and data circulating in the new logistics service supply chain, form unified and standard traceable data, and propose a multi-dimensional traceable data model based on logistics service supply chain. Based on the proposed model, combined with the business process of the logistics service supply chain and asymmetric encryption, a blockchain-based logistics service transaction traceability algorithm is designed. Finally, the simulation results show that the algorithm realizes the end-to-end traceability of the logistics service supply chain, and the service transaction is transparent while ensuring the integrity and security of the data.
A successful Smart Grid system requires purpose-built security architecture which is explicitly designed to protect customer data confidentiality. In addition to the investment on electric power infrastructure for protecting the privacy of Smart Grid-related data, entities need to actively participate in the NIST interoperability framework process; establish policies and oversight structure for the enforcement of cyber security controls of the data through adoption of security best practices, personnel training, cyber vulnerability assessments, and consumer privacy audits.