Biblio
with the advent of Cloud Computing a new era of computing has come into existence. No doubt, there are numerous advantages associated with the Cloud Computing but, there is other side of the picture too. The challenges associated with it need a more promising reply as far as the security of data that is stored, in process and in transit is concerned. This paper put forth a cloud computing model that tries to answer the data security queries; we are talking about, in terms of the four cryptographic techniques namely Homomorphic Encryption (HE), Verifiable Computation (VC), Secure Multi-Party Computation (SMPC), Functional Encryption (FE). This paper takes into account the various cryptographic techniques to undertake cloud computing security issues. It also surveys these important (existing) cryptographic tools/techniques through a proposed Cloud computation model that can be used for Big Data applications. Further, these cryptographic tools are also taken into account in terms of CIA triad. Then, these tools/techniques are analyzed by comparing them on the basis of certain parameters of concern.
With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.
Big data provides a way to handle and analyze large amount of data or complex set. It provides a systematic extraction also. In this paper a hybrid security analysis based on intelligent adaptive learning in big data has been discussed with the current trends. This paper also explores the possibility of cloud computing collaboration with big data. The advantages along with the impact for the overall platform evaluation has been discussed with the traditional trends. It has been useful in the analysis and the exploration of future research. This discussion also covers the computational variability and the connotation in terms of data reliability, availability and management in big data with data security aspects.
In order to design an end-to-end data security preservation mechanism, this paper first proposes a grid terminal data security management model based on master-slave Blockchain, including grid terminal, slave Blockchain, and main Blockchain. Among them, the grid terminal mainly completes data generation and data release, the receiving of data and the distributed signature of data are mainly completed from the slave Blockchain, and the main Blockchain mainly completes the intelligent storage of data. Secondly, the data security management mechanism of grid terminal based on master-slave Blockchain is designed, including data distribution process design, data receiving process design, data distributed signature design and data intelligent storage process design. Finally, taking the identity registration and data storage process of the grid terminal as an example, the workflow of the data security management mechanism of the grid terminal based on the master-slave Blockchain is described in detail.
The rapid growth of power Internet of Things devices has led to traditional data security sharing mechanisms that are no longer suitable for attribute and permission management of massive devices. In response to this problem, this article proposes a blockchain-based data security sharing mechanism for the power Internet of Things, which reduces the risk of data leakage through decentralization in the architecture and promotes the integration of multiple information and methods.
With the rapid progress of informatization construction in power business, data resource has become the basic strategic resource of the power industry and innovative element in power production. The security protection of data in power business is particularly important in the informatization construction of power business. In order to implement data security protection, transparent encryption is one of the fifteen key technical standards in the Construction Guideline of the Standard Network Data Security System. However, data storage in the encrypted state is bound to affect the security audit of data to a certain extent. Based on this problem, this paper proposes a scheme to audit the sensitivity of the power business data under the protection of encryption to achieve an efficient sensitivity audit of ciphertext data with the premise of not revealing the decryption key or data information. Through a security demonstration, this paper fully proves that this solution is secure under the known plaintext attacks.
Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.
Zero Trust Model ensures each node is responsible for the approval of the transaction before it gets committed. The data owners can track their data while it’s shared amongst the various data custodians ensuring data security. The consensus algorithm enables the users to trust the network as malicious nodes fail to get approval from all nodes, thereby causing the transaction to be aborted. The use case chosen to demonstrate the proposed consensus algorithm is the college placement system. The algorithm has been extended to implement a diversified, decentralized, automated placement system, wherein the data owner i.e. the student, maintains an immutable certificate vault and the student’s data has been validated by a verifier network i.e. the academic department and placement department. The data transfer from student to companies is recorded as transactions in the distributed ledger or blockchain allowing the data to be tracked by the student.
This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.
Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.
Cipher Text Policy Attribute Based Encryption which is a form of Public Key Encryption has become a renowned approach as a Data access control scheme for data security and confidentiality. It not only provides the flexibility and scalability in the access control mechanisms but also enhances security by fuzzy fined-grained access control. However, schemes are there which for more security increases the key size which ultimately leads to high encryption and decryption time. Also, there is no provision for handling the middle man attacks during data transfer. In this paper, a light-weight and more scalable encryption mechanism is provided which not only uses fewer resources for encoding and decoding but also improves the security along with faster encryption and decryption time. Moreover, this scheme provides an efficient key sharing mechanism for providing secure transfer to avoid any man-in-the-middle attacks. Also, due to fuzzy policies inclusion, chances are there to get approximation of user attributes available which makes the process fast and reliable and improves the performance of legitimate users.
Cloud computing is an Internet-based technology that emerging rapidly in the last few years due to popular and demanded services required by various institutions, organizations, and individuals. structured, unstructured, semistructured data is transfer at a record pace on to the cloud server. These institutions, businesses, and organizations are shifting more and more increasing workloads on cloud server, due to high cost, space and maintenance issues from big data, cloud computing will become a potential choice for the storage of data. In Cloud Environment, It is obvious that data is not secure completely yet from inside and outside attacks and intrusions because cloud servers are under the control of a third party. The Security of data becomes an important aspect due to the storage of sensitive data in a cloud environment. In this paper, we give an overview of characteristics and state of art of big data and data security & privacy top threats, open issues and current challenges and their impact on business are discussed for future research perspective and review & analysis of previous and recent frameworks and architectures for data security that are continuously established against threats to enhance how to keep and store data in the cloud environment.
Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.