Biblio
The root causes of many security vulnerabilities include a pernicious combination of two problems, often regarded as inescapable aspects of computing. First, the protection mechanisms provided by the mainstream processor architecture and C/C++ language abstractions, dating back to the 1970s and before, provide only coarse-grain virtual-memory-based protection. Second, mainstream system engineering relies almost exclusively on test-and-debug methods, with (at best) prose specifications. These methods have historically sufficed commercially for much of the computer industry, but they fail to prevent large numbers of exploitable bugs, and the security problems that this causes are becoming ever more acute.In this paper we show how more rigorous engineering methods can be applied to the development of a new security-enhanced processor architecture, with its accompanying hardware implementation and software stack. We use formal models of the complete instruction-set architecture (ISA) at the heart of the design and engineering process, both in lightweight ways that support and improve normal engineering practice - as documentation, in emulators used as a test oracle for hardware and for running software, and for test generation - and for formal verification. We formalise key intended security properties of the design, and establish that these hold with mechanised proof. This is for the same complete ISA models (complete enough to boot operating systems), without idealisation.We do this for CHERI, an architecture with hardware capabilities that supports fine-grained memory protection and scalable secure compartmentalisation, while offering a smooth adoption path for existing software. CHERI is a maturing research architecture, developed since 2010, with work now underway on an Arm industrial prototype to explore its possible adoption in mass-market commercial processors. The rigorous engineering work described here has been an integral part of its development to date, enabling more rapid and confident experimentation, and boosting confidence in the design.
With its huge real-world demands, large-scale confidential computing still cannot be supported by today's Trusted Execution Environment (TEE), due to the lack of scalable and effective protection of high-throughput accelerators like GPUs, FPGAs, and TPUs etc. Although attempts have been made recently to extend the CPU-like enclave to GPUs, these solutions require change to the CPU or GPU chips, may introduce new security risks due to the side-channel leaks in CPU-GPU communication and are still under the resource constraint of today's CPU TEE.To address these problems, we present the first Heterogeneous TEE design that can truly support large-scale compute or data intensive (CDI) computing, without any chip-level change. Our approach, called HETEE, is a device for centralized management of all computing units (e.g., GPUs and other accelerators) of a server rack. It is uniquely designed to work with today's data centres and clouds, leveraging modern resource pooling technologies to dynamically compartmentalize computing tasks, and enforce strong isolation and reduce TCB through hardware support. More specifically, HETEE utilizes the PCIe ExpressFabric to allocate its accelerators to the server node on the same rack for a non-sensitive CDI task, and move them back into a secure enclave in response to the demand for confidential computing. Our design runs a thin TCB stack for security management on a security controller (SC), while leaving a large set of software (e.g., AI runtime, GPU driver, etc.) to the integrated microservers that operate enclaves. An enclaves is physically isolated from others through hardware and verified by the SC at its inception. Its microserver and computing units are restored to a secure state upon termination.We implemented HETEE on a real hardware system, and evaluated it with popular neural network inference and training tasks. Our evaluations show that HETEE can easily support the CDI tasks on the real-world scale and incurred a maximal throughput overhead of 2.17% for inference and 0.95% for training on ResNet152.
Physical Unclonable Function is an innovative hardware security primitives that exploit the physical characteristics of a physical object to generate a unique identifier, which play the role of the object's fingerprint. Silicon PUF, a popular type of PUFs, exploits the variation in the manufacturing process of integrated circuits (ICs). It needs an input called challenge to generate the response as an output. In addition, of classical attacks, PUFs are vulnerable to physical and modeling attacks. The performance of the PUFs is measured by several metrics like reliability, uniqueness and uniformity. So as an evidence, the main goal is to provide a complete tool that checks the strength and quantifies the performance of a given physical unconscionable function. This paper provides a tool and develops a set of metrics that can achieve safely the proposed goal.
Security has become a crucial consideration and is one of the most important design goals for an embedded system. This paper examines the type of boot sequence, and more specifically a trusted boot which utilizes the method of chain of trust. After defining these terms, this paper will examine the limitations of the existing safe boot, and finally propose the method of trusted boot based on hypothesis testing benchmark and the cost it takes to perform this method.
This paper describe most popular IoT protocols used for IoT embedded systems and research their advantage and disadvantage. Hardware stage used in this experiment is described in this article - it is used Esp32 and programming language C. It is very important to use corrected IoT protocol that is determines of purpose, hardware and software of system. There are so different IoT protocols, because they are cover vary requirements for vary cases.
A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.
Heterogeneous system-on-chip platforms with multiple processing cores are becoming increasingly common in safety-and security-critical embedded systems. To facilitate a logical isolation of physically connected on-chip components, internal communication links of such platforms are often equipped with dedicated access protection units. When performed manually, however, the configuration of these units can be both time-consuming and error-prone. To resolve this issue, we present a formal model and a corresponding design methodology that allows developers to specify access permissions and information flow requirements for embedded systems in a mostly platform-independent manner. As part of the methodology, the consistency between the permissions and the requirements is automatically verified and an extensible generation framework is used to transform the abstract permission declarations into configuration code for individual access protection units. We present a prototypical implementation of this approach and validate it by generating configuration code for the access protection unit of a commercially available multiprocessor system-on-chip.
Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.
The use of biometrics in security applications may be vulnerable to several challenges of hacking. Thus, the emergence of cancellable biometrics becomes a suitable solution to this problem. This paper presents a one-way cancellable biometric transform that depends on 3D chaotic maps for face and fingerprint encryption. It aims to avoid cloning of original biometrics and allow the templates used by each user in different applications to be variable. The permutations achieved with the chaotic maps guarantee high security of the biometric templates, especially with the 3D implementation of the encryption algorithm. In addition, the paper presents a hardware implementation for this framework. The proposed algorithm also achieves good performance in the presence of low and moderate levels of noise. An experimental version of the proposed cancellable biometric system has been applied on FPGA model. The obtained results achieve a powerful performance of the proposed cancellable biometric system.
Microarchitectural Side-Channel Attacks (SCAs) have emerged recently to compromise the security of computer systems by exploiting the existing processors' hardware vulnerabilities. In order to detect such attacks, prior studies have proposed the deployment of low-level features captured from built-in Hardware Performance Counter (HPC) registers in modern microprocessors to implement accurate Machine Learning (ML)-based SCAs detectors. Though effective, such attack detection techniques have mainly focused on binary classification models offering limited insights on identifying the type of attacks. In addition, while existing SCAs detectors required prior knowledge of attacks applications to detect the pattern of side-channel attacks using a variety of microarchitectural features, detecting unknown (zero-day) SCAs at run-time using the available HPCs remains a major challenge. In response, in this work we first identify the most important HPC features for SCA detection using an effective feature reduction method. Next, we propose Phased-Guard, a two-level machine learning-based framework to accurately detect and classify both known and unknown attacks at run-time using the most prominent low-level features. In the first level (SCA Detection), Phased-Guard using a binary classification model detects the existence of SCAs on the target system by determining the critical scenarios including system under attack and system under no attack. In the second level (SCA Identification) to further enhance the security against side-channel attacks, Phased-Guard deploys a multiclass classification model to identify the type of SCA applications. The experimental results indicate that Phased-Guard by monitoring only the victim applications' microarchitectural HPCs data, achieves up to 98 % attack detection accuracy and 99.5% SCA identification accuracy significantly outperforming the state-of-the-art solutions by up to 82 % in zero-day attack detection at the cost of only 4% performance overhead for monitoring.
The relevance of data protection is related to the intensive informatization of various aspects of society and the need to prevent unauthorized access to them. World spending on ensuring information security (IS) for the current state: expenses in the field of IS today amount to \$81.7 billion. Expenditure forecast by 2020: about \$105 billion [1]. Information protection of military facilities is the most critical in the public sector, in the non-state - financial organizations is one of the leaders in spending on information protection. An example of the importance of IS research is the Trojan encoder WannaCry, which infected hundreds of thousands of computers around the world, attacks are recorded in more than 116 countries. The attack of the encoder of WannaCry (Wana Decryptor) happens through a vulnerability in service Server Message Block (protocol of network access to file systems) of Windows OS. Then, a rootkit (a set of malware) was installed on the infected system, using which the attackers launched an encryption program. Then each vulnerable computer could become infected with another infected device within one local network. Due to these attacks, about \$70,000 was lost (according to data from 18.05.2017) [2]. It is assumed in the presented work, that the software level of information protection is fundamentally insufficient to ensure the stable functioning of critical objects. This is due to the possible hardware implementation of undocumented instructions, discussed later. The complexity of computing systems and the degree of integration of their components are constantly growing. Therefore, monitoring the operation of the computer hardware is necessary to achieve the maximum degree of protection, in particular, data processing methods.
The use of a very wide windows operating system is undeniably also followed by increasing attacks on the operating system. Universal Serial Bus (USB) is one of the mechanisms used by many people with plug and play functionality that is very easy to use, making data transfers fast and easy compared to other hardware. Some research shows that the Windows operating system has weaknesses so that it is often exploited by using various attacks and malware. There are various methods used to exploit the Windows operating system, one of them by using a USB device. By using a USB device, a criminal can plant a backdoor reverse shell to exploit the victim's computer just by connecting the USB device to the victim's computer without being noticed. This research was conducted by planting a reverse shell backdoor through a USB device to exploit the victim's device, especially the webcam and microphone device on the target computer. From 35 experiments that have been carried out, it was found that 83% of spying attacks using USB devices on the Windows operating system were successfully carried out.