Biblio
Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.
We introduce a new defense mechanism for stochastic control systems with control objectives, to enhance their resilience before the detection of any attacks. To this end, we cautiously design the outputs of the sensors that monitor the state of the system since the attackers need the sensor outputs for their malicious objectives in stochastic control scenarios. Different from the defense mechanisms that seek to detect infiltration or to improve detectability of the attacks, the proposed approach seeks to minimize the damage of possible attacks before they actually have even been detected. We, specifically, consider a controlled Gauss-Markov process, where the controller could have been infiltrated into at any time within the system's operation. Within the framework of game-theoretic hierarchical equilibrium, we provide a semi-definite programming based algorithm to compute the optimal linear secure sensor outputs that enhance the resiliency of control systems prior to attack detection.
Blockchain-based cryptocurrencies secure a decentralized consensus protocol by incentives. The protocol participants, called miners, generate (mine) a series of blocks, each containing monetary transactions created by system users. As incentive for participation, miners receive newly minted currency and transaction fees paid by transaction creators. Blockchain bandwidth limits lead users to pay increasing fees in order to prioritize their transactions. However, most prior work focused on models where fees are negligible. In a notable exception, Carlsten et al. [17] postulated that if incentives come only from fees then a mining gap would form\textasciitilde— miners would avoid mining when the available fees are insufficient. In this work, we analyze cryptocurrency security in realistic settings, taking into account all elements of expenses and rewards. To study when gaps form, we analyze the system as a game we call the gap game. We analyze the game with a combination of symbolic and numeric analysis tools in a wide range of scenarios. Our analysis confirms Carlsten et al.'s postulate; indeed, we show that gaps form well before fees are the only incentive, and analyze the implications on security. Perhaps surprisingly, we show that different miners choose different gap sizes to optimize their utility, even when their operating costs are identical. Alarmingly, we see that the system incentivizes large miner coalitions, reducing system decentralization. We describe the required conditions to avoid the incentive misalignment, providing guidelines for future cryptocurrency design.
It is standard practice that the secret key derived from an execution of a Password Authenticated Key Exchange (PAKE) protocol is used to authenticate and encrypt some data payload using a Symmetric Key Protocol (SKP). Unfortunately, most PAKEs of practical interest are studied using so-called game-based models, which – unlike simulation models – do not guarantee secure composition per se. However, Brzuska et al. (CCS 2011) have shown that a middle ground is possible in the case of authenticated key exchange that relies on Public-Key Infrastructure (PKI): the game-based models do provide secure composition guarantees when the class of higher-level applications is restricted to SKPs. The question that we pose in this paper is whether or not a similar result can be exhibited for PAKE. Our work answers this question positively. More specifically, we show that PAKE protocols secure according to the game-based Real-or-Random (RoR) definition with the weak forward secrecy of Abdalla et al. (S&P 2015) allow for safe composition with arbitrary, higher-level SKPs. Since there is evidence that most PAKEs secure in the Find-then-Guess (FtG) model are in fact secure according to RoR definition, we can conclude that nearly all provably secure PAKEs enjoy a certain degree of composition, one that at least covers the case of implementing secure channels.
Machine learning algorithms have reached mainstream status and are widely deployed in many applications. The accuracy of such algorithms depends significantly on the size of the underlying training dataset; in reality a small or medium sized organization often does not have enough data to train a reasonably accurate model. For such organizations, a realistic solution is to train machine learning models based on a joint dataset (which is a union of the individual ones). Unfortunately, privacy concerns prevent them from straightforwardly doing so. While a number of privacy-preserving solutions exist for collaborating organizations to securely aggregate the parameters in the process of training the models, we are not aware of any work that provides a rational framework for the participants to precisely balance the privacy loss and accuracy gain in their collaboration. In this paper, we model the collaborative training process as a two-player game where each player aims to achieve higher accuracy while preserving the privacy of its own dataset. We introduce the notion of Price of Privacy, a novel approach for measuring the impact of privacy protection on the accuracy in the proposed framework. Furthermore, we develop a game-theoretical model for different player types, and then either find or prove the existence of a Nash Equilibrium with regard to the strength of privacy protection for each player.
This paper presents a control strategy for Cyber-Physical System defense developed in the framework of the European Project ATENA, that concerns Critical Infrastructure (CI) protection. The aim of the controller is to find the optimal security configuration, in terms of countermeasures to implement, in order to address the system vulnerabilities. The attack/defense problem is modeled as a multi-agent general sum game, where the aim of the defender is to prevent the most damage possible by finding an optimal trade-off between prevention actions and their costs. The problem is solved utilizing Reinforcement Learning and simulation results provide a proof of the proposed concept, showing how the defender of the protected CI is able to minimize the damage caused by his her opponents by finding the Nash equilibrium of the game in the zero-sum variant, and, in a more general scenario, by driving the attacker in the position where the damage she/he can cause to the infrastructure is lower than the cost it has to sustain to enforce her/his attack strategy.
For the occurrence of network attacks, the most important thing for network security managers is how to conduct attack security defenses under low-risk control. And in the attack risk control, the first and most important step is to choose the defense node of risk control. In this paper, aiming to solve the problem of network attack security risk control under complex networks, we propose a game attack risk control node selection method based on game theory. The method utilizes the relationship between the vulnerabilities and analyzes the vulnerability intent information of the complex network to construct an attack risk diffusion network. In order to truly reflect the different meanings of each node in the attack risk diffusion network for attack and defense, this paper uses the host vulnerability attack and defense income evaluation calculation to give each node in the network its offensive and defensive income. According to the above-mentioned attack risk spread network of offensive and defensive gains, this paper combines game theory and maximum benefit ideas to select the best Top defense node information. In this paper, The method proposed in this paper can be used to select network security risk control nodes on complex networks, which can help network security managers to play a good auxiliary role in cyber attack defense.
The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.
The purpose of this research is to propose a new mathematical model, designed to evaluate the security of cryptosystems. This model is a mixture of ideas from two basic mathematical theories, information theory and game theory. The role of information theory is assigning the model with security criteria of the cryptosystems. The role of game theory was to produce the value of the game which is representing the outcome of these criteria, which finally refers to cryptosystem's security. The proposed model support an accurate and mathematical way to evaluate the security of cryptosystems by unifying the criteria resulted from information theory and produce a unique reasonable value.
In recent decades, a significant research effort has been devoted to the development of forensic tools for retrieving information and detecting possible tampering of multimedia documents. A number of counter-forensic tools have been developed as well in order to impede a correct analysis. Such tools are often very effective due to the vulnerability of multimedia forensics tools, which are not designed to work in an adversarial environment. In this scenario, developing forensic techniques capable of granting good performance even in the presence of an adversary aiming at impeding the forensic analysis, is becoming a necessity. This turns out to be a difficult task, given the weakness of the traces the forensic analysis usually relies on. The goal of this paper is to provide an overview of the advances made over the last decade in the field of adversarial multimedia forensics. We first consider the view points of the forensic analyst and the attacker independently, then we review some of the attempts made to simultaneously take into account both perspectives by resorting to game theory. Eventually, we discuss the hottest open problems and outline possible paths for future research.
We consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects its signature that neither Client nor Sender can modify. Since signature detection is costly, Relay tends to occasionally skip it and trust an object; this prompts Sender to occasionally launch a Fake VIP attack, i.e., demand undue QoS level. In a Stackelberg game setting, Relay employs a trust strategy in the form of a double-blind reputation scheme so as to minimize the signature detection cost and undue QoS provision, anticipating a best-response Fake VIP attack strategy on the part of Sender. We ask whether the double-blind reputation scheme, previously proved resilient to a probabilistic Fake VIP attack strategy, is equally resilient to more intelligent Sender behavior. Two intelligent attack strategies are proposed and analyzed using two-dimensional Markov chains.
This talk will cover two topics, namely, modeling and design of Moving Target Defense (MTD), and DIFT games for modeling Advanced Persistent Threats (APTs). We will first present a game-theoretic approach to characterizing the trade-off between resource efficiency and defense effectiveness in decoy- and randomization-based MTD. We will then address the game formulation for APTs. APTs are mounted by intelligent and resourceful adversaries who gain access to a targeted system and gather information over an extended period of time. APTs consist of multiple stages, including initial system compromise, privilege escalation, and data exfiltration, each of which involves strategic interaction between the APT and the targeted system. While this interaction can be viewed as a game, the stealthiness, adaptiveness, and unpredictability of APTs imply that the information structure of the game and the strategies of the APT are not readily available. Our approach to modeling APTs is based on the insight that the persistent nature of APTs creates information flows in the system that can be monitored. One monitoring mechanism is Dynamic Information Flow Tracking (DIFT), which taints and tracks malicious information flows through a system and inspects the flows at designated traps. Since tainting all flows in the system will incur significant memory and storage overhead, efficient tagging policies are needed to maximize the probability of detecting the APT while minimizing resource costs. In this work, we develop a multi-stage stochastic game framework for modeling the interaction between an APT and a DIFT, as well as designing an efficient DIFT-based defense. Our model is grounded on APT data gathered using the Refinable Attack Investigation (RAIN) flow-tracking framework. We present the current state of our formulation, insights that it provides on designing effective defenses against APTs, and directions for future work.