Visible to the public Biblio

Found 208 results

Filters: Keyword is game theory  [Clear All Filters]
2020-02-17
Paul, Shuva, Ni, Zhen.  2019.  A Strategic Analysis of Attacker-Defender Repeated Game in Smart Grid Security. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.

2020-02-10
Chen, Siyuan, Liu, Wei, Liu, Jiamou, Soo, Khí-Uí, Chen, Wu.  2019.  Maximizing Social Welfare in Fractional Hedonic Games using Shapley Value. 2019 IEEE International Conference on Agents (ICA). :21–26.
Fractional hedonic games (FHGs) are extensively studied in game theory and explain the formation of coalitions among individuals in a group. This paper investigates the coalition generation problem, namely, finding a coalition structure whose social welfare, i.e., the sum of the players' payoffs, is maximized. We focus on agent-based methods which set the decision rules for each player in the game. Through repeated interactions the players arrive at a coalition structure. In particular, we propose CFSV, namely, coalition formation with Shapley value-based welfare distribution scheme. To evaluate CFSV, we theoretically demonstrate that this algorithm achieves optimal coalition structure over certain standard graph classes and empirically compare the algorithm against other existing benchmarks on real-world and synthetic graphs. The results show that CFSV is able to achieve superior performance.
Lakshminarayana, Subhash, Belmega, E. Veronica, Poor, H. Vincent.  2019.  Moving-Target Defense for Detecting Coordinated Cyber-Physical Attacks in Power Grids. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid's transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost.
2020-01-20
Xiao, Kaiming, Zhu, Cheng, Xie, Junjie, Zhou, Yun, Zhu, Xianqiang, Zhang, Weiming.  2018.  Dynamic Defense Strategy against Stealth Malware Propagation in Cyber-Physical Systems. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1790–1798.
Stealth malware, a representative tool of advanced persistent threat (APT) attacks, in particular poses an increased threat to cyber-physical systems (CPS). Due to the use of stealthy and evasive techniques (e.g., zero-day exploits, obfuscation techniques), stealth malwares usually render conventional heavyweight countermeasures (e.g., exploits patching, specialized ant-malware program) inapplicable. Light-weight countermeasures (e.g., containment techniques), on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game, and safety requirements of CPS are introduced as constraints in the defender's decision model. Specifically, we first propose a static game (SSPTI), and then extend it to a multi-stage dynamic game (DSPTI) to meet the need of real-time decision making. Both games are modelled as bi-level integer programs, and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg Equilibrium of SSPTI. Finally, we design a model predictive control strategy to solve DSPTI approximately by sequentially solving an approximation of SSPTI. The extensive simulation results demonstrate that the proposed dynamic defense strategy can achieve a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.
2019-12-30
Shirasaki, Yusuke, Takyu, Osamu, Fujii, Takeo, Ohtsuki, Tomoaki, Sasamori, Fumihito, Handa, Shiro.  2018.  Consideration of security for PLNC with untrusted relay in game theoretic perspective. 2018 IEEE Radio and Wireless Symposium (RWS). :109–112.
A physical layer network coding (PLNC) is a highly efficient scheme for exchanging information between two nodes. Since the relay receives the interfered signal between two signals sent by two nodes, it hardly decodes any information from received signal. Therefore, the secure wireless communication link to the untrusted relay is constructed. The two nodes optimize the transmit power control for maximizing the secure capacity but these depend on the channel state information informed by the relay station. Therefore, the untrusted relay disguises the informed CSI for exploiting the information from two nodes. This paper constructs the game of two optimizations between the legitimate two nodes and the untrusted relay for clarifying the security of PLNC with untrusted relay.
Belavagi, Manjula C, Muniyal, Balachandra.  2016.  Game theoretic approach towards intrusion detection. 2016 International Conference on Inventive Computation Technologies (ICICT). 1:1–5.
Today's network is distributed and heterogeneous in nature and has numerous applications which affect day to day life, such as e-Banking, e-Booking of tickets, on line shopping etc. Hence the security of the network is crucial. Threats in the network can be due to intrusions. Such threats can be observed and handled using Intrusion Detection System. The security can be achieved using intrusion detection system, which observes the data traffic and identifies it as an intrusion or not. The objective of this paper is to design a model using game theoretic approach for intrusion detection. Game model is designed by defining players, strategies and utility functions to identify the Probe attacks. This model is tested with NSLKDD data set. The model is the Probe attacks are identified by dominated strategies elimination method. Experimental results shows that game model identifies the attacks with good detection rate.
Chen, Jing, Du, Ruiying.  2009.  Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.
Tootaghaj, Diman Zad, Farhat, Farshid, Pakravan, Mohammad-Reza, Aref, Mohammad-Reza.  2011.  Game-theoretic approach to mitigate packet dropping in wireless Ad-hoc networks. 2011 IEEE Consumer Communications and Networking Conference (CCNC). :163–165.
Performance of routing is severely degraded when misbehaving nodes drop packets instead of properly forwarding them. In this paper, we propose a Game-Theoretic Adaptive Multipath Routing (GTAMR) protocol to detect and punish selfish or malicious nodes which try to drop information packets in routing phase and defend against collaborative attacks in which nodes try to disrupt communication or save their power. Our proposed algorithm outranks previous schemes because it is resilient against attacks in which more than one node coordinate their misbehavior and can be used in networks which wireless nodes use directional antennas. We then propose a game theoretic strategy, ERTFT, for nodes to promote cooperation. In comparison with other proposed TFT-like strategies, ours is resilient to systematic errors in detection of selfish nodes and does not lead to unending death spirals.
2019-12-18
Kessel, Ronald.  2010.  The positive force of deterrence: Estimating the quantitative effects of target shifting. 2010 International WaterSide Security Conference. :1–5.
The installation of a protection system can provide protection by either deterring or stopping an attacker. Both modes of effectiveness-deterring and stopping-are uncertain. Some have guessed that deterrence plays a much bigger role than stopping force. The force of deterrence should therefore be of considerable interest, especially if its effect could be estimated and incorporated into a larger risk analysis and business case for developing and buying new systems, but nowhere has it been estimated quantitatively. The effect of one type of deterrence, namely, influencing an attacker's choice of targets-or target shifting, biasing an attacker away from some targets toward others-is assessed quantitatively here using a game-theoretic approach. It is shown that its positive effects are significant. It features as a force multiplier on the order of magnitude or more, even for low-performance security countermeasures whose effectiveness may be compromised somewhat, of necessity, in order to keep the number of false alarms serviceably low. The analysis furthermore implies that there are certain minimum levels of stopping performance that a protection should provide in order to avoid attracting the choice of attackers (under deterrence). Nothing in the analysis argues for complacency in security. Developers must still design the best affordable systems. The analysis enters into the middle ground of security, between no protection and impossibly perfect protection. It counters the criticisms that some raise about lower-level, affordable, sustainable measures that security providers naturally gravitate toward. Although these measures might in some places be defeated in ways that a non-expert can imagine, the measures are not for that reason irresponsible or to be dismissed. Their effectiveness can be much greater than they first appear.
2019-12-16
Sayin, Muhammed O., Ba\c sar, Tamer.  2018.  Secure Sensor Design for Resiliency of Control Systems Prior to Attack Detection. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1686-1691.

We introduce a new defense mechanism for stochastic control systems with control objectives, to enhance their resilience before the detection of any attacks. To this end, we cautiously design the outputs of the sensors that monitor the state of the system since the attackers need the sensor outputs for their malicious objectives in stochastic control scenarios. Different from the defense mechanisms that seek to detect infiltration or to improve detectability of the attacks, the proposed approach seeks to minimize the damage of possible attacks before they actually have even been detected. We, specifically, consider a controlled Gauss-Markov process, where the controller could have been infiltrated into at any time within the system's operation. Within the framework of game-theoretic hierarchical equilibrium, we provide a semi-definite programming based algorithm to compute the optimal linear secure sensor outputs that enhance the resiliency of control systems prior to attack detection.

Tsabary, Itay, Eyal, Ittay.  2018.  The Gap Game. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :713-728.

Blockchain-based cryptocurrencies secure a decentralized consensus protocol by incentives. The protocol participants, called miners, generate (mine) a series of blocks, each containing monetary transactions created by system users. As incentive for participation, miners receive newly minted currency and transaction fees paid by transaction creators. Blockchain bandwidth limits lead users to pay increasing fees in order to prioritize their transactions. However, most prior work focused on models where fees are negligible. In a notable exception, Carlsten et al. [17] postulated that if incentives come only from fees then a mining gap would form\textasciitilde— miners would avoid mining when the available fees are insufficient. In this work, we analyze cryptocurrency security in realistic settings, taking into account all elements of expenses and rewards. To study when gaps form, we analyze the system as a game we call the gap game. We analyze the game with a combination of symbolic and numeric analysis tools in a wide range of scenarios. Our analysis confirms Carlsten et al.'s postulate; indeed, we show that gaps form well before fees are the only incentive, and analyze the implications on security. Perhaps surprisingly, we show that different miners choose different gap sizes to optimize their utility, even when their operating costs are identical. Alarmingly, we see that the system incentivizes large miner coalitions, reducing system decentralization. We describe the required conditions to avoid the incentive misalignment, providing guidelines for future cryptocurrency design.

2019-12-11
Skrobot, Marjan, Lancrenon, Jean.  2018.  On Composability of Game-Based Password Authenticated Key Exchange. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :443–457.

It is standard practice that the secret key derived from an execution of a Password Authenticated Key Exchange (PAKE) protocol is used to authenticate and encrypt some data payload using a Symmetric Key Protocol (SKP). Unfortunately, most PAKEs of practical interest are studied using so-called game-based models, which – unlike simulation models – do not guarantee secure composition per se. However, Brzuska et al. (CCS 2011) have shown that a middle ground is possible in the case of authenticated key exchange that relies on Public-Key Infrastructure (PKI): the game-based models do provide secure composition guarantees when the class of higher-level applications is restricted to SKPs. The question that we pose in this paper is whether or not a similar result can be exhibited for PAKE. Our work answers this question positively. More specifically, we show that PAKE protocols secure according to the game-based Real-or-Random (RoR) definition with the weak forward secrecy of Abdalla et al. (S&P 2015) allow for safe composition with arbitrary, higher-level SKPs. Since there is evidence that most PAKEs secure in the Find-then-Guess (FtG) model are in fact secure according to RoR definition, we can conclude that nearly all provably secure PAKEs enjoy a certain degree of composition, one that at least covers the case of implementing secure channels.

2019-12-09
Rani, Rinki, Kumar, Sushil, Dohare, Upasana.  2019.  Trust Evaluation for Light Weight Security in Sensor Enabled Internet of Things: Game Theory Oriented Approach. IEEE Internet of Things Journal. 6:8421–8432.
In sensor-enabled Internet of Things (IoT), nodes are deployed in an open and remote environment, therefore, are vulnerable to a variety of attacks. Recently, trust-based schemes have played a pivotal role in addressing nodes' misbehavior attacks in IoT. However, the existing trust-based schemes apply network wide dissemination of the control packets that consume excessive energy in the quest of trust evaluation, which ultimately weakens the network lifetime. In this context, this paper presents an energy efficient trust evaluation (EETE) scheme that makes use of hierarchical trust evaluation model to alleviate the malicious effects of illegitimate sensor nodes and restricts network wide dissemination of trust requests to reduce the energy consumption in clustered-sensor enabled IoT. The proposed EETE scheme incorporates three dilemma game models to reduce additional needless transmissions while balancing the trust throughout the network. Specially: 1) a cluster formation game that promotes the nodes to be cluster head (CH) or cluster member to avoid the extraneous cluster; 2) an optimal cluster formation dilemma game to affirm the minimum number of trust recommendations for maintaining the balance of the trust in a cluster; and 3) an activity-based trust dilemma game to compute the Nash equilibrium that represents the best strategy for a CH to launch its anomaly detection technique which helps in mitigation of malicious activity. Simulation results show that the proposed EETE scheme outperforms the current trust evaluation schemes in terms of detection rate, energy efficiency and trust evaluation time for clustered-sensor enabled IoT.
2019-10-15
Pejo, Balazs, Tang, Qiang, Biczók, Gergely.  2018.  The Price of Privacy in Collaborative Learning. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2261–2263.

Machine learning algorithms have reached mainstream status and are widely deployed in many applications. The accuracy of such algorithms depends significantly on the size of the underlying training dataset; in reality a small or medium sized organization often does not have enough data to train a reasonably accurate model. For such organizations, a realistic solution is to train machine learning models based on a joint dataset (which is a union of the individual ones). Unfortunately, privacy concerns prevent them from straightforwardly doing so. While a number of privacy-preserving solutions exist for collaborating organizations to securely aggregate the parameters in the process of training the models, we are not aware of any work that provides a rational framework for the participants to precisely balance the privacy loss and accuracy gain in their collaboration. In this paper, we model the collaborative training process as a two-player game where each player aims to achieve higher accuracy while preserving the privacy of its own dataset. We introduce the notion of Price of Privacy, a novel approach for measuring the impact of privacy protection on the accuracy in the proposed framework. Furthermore, we develop a game-theoretical model for different player types, and then either find or prove the existence of a Nash Equilibrium with regard to the strength of privacy protection for each player.

2019-09-05
Panfili, M., Giuseppi, A., Fiaschetti, A., Al-Jibreen, H. B., Pietrabissa, A., Priscoli, F. Delli.  2018.  A Game-Theoretical Approach to Cyber-Security of Critical Infrastructures Based on Multi-Agent Reinforcement Learning. 2018 26th Mediterranean Conference on Control and Automation (MED). :460-465.

This paper presents a control strategy for Cyber-Physical System defense developed in the framework of the European Project ATENA, that concerns Critical Infrastructure (CI) protection. The aim of the controller is to find the optimal security configuration, in terms of countermeasures to implement, in order to address the system vulnerabilities. The attack/defense problem is modeled as a multi-agent general sum game, where the aim of the defender is to prevent the most damage possible by finding an optimal trade-off between prevention actions and their costs. The problem is solved utilizing Reinforcement Learning and simulation results provide a proof of the proposed concept, showing how the defender of the protected CI is able to minimize the damage caused by his her opponents by finding the Nash equilibrium of the game in the zero-sum variant, and, in a more general scenario, by driving the attacker in the position where the damage she/he can cause to the infrastructure is lower than the cost it has to sustain to enforce her/his attack strategy.

Qiu, Yanbin, Liu, Yanhua, Li, Shijin.  2018.  A Method of Cyber Risk Control Node Selection Based on Game Theory. Proceedings of the 8th International Conference on Communication and Network Security. :32-36.

For the occurrence of network attacks, the most important thing for network security managers is how to conduct attack security defenses under low-risk control. And in the attack risk control, the first and most important step is to choose the defense node of risk control. In this paper, aiming to solve the problem of network attack security risk control under complex networks, we propose a game attack risk control node selection method based on game theory. The method utilizes the relationship between the vulnerabilities and analyzes the vulnerability intent information of the complex network to construct an attack risk diffusion network. In order to truly reflect the different meanings of each node in the attack risk diffusion network for attack and defense, this paper uses the host vulnerability attack and defense income evaluation calculation to give each node in the network its offensive and defensive income. According to the above-mentioned attack risk spread network of offensive and defensive gains, this paper combines game theory and maximum benefit ideas to select the best Top defense node information. In this paper, The method proposed in this paper can be used to select network security risk control nodes on complex networks, which can help network security managers to play a good auxiliary role in cyber attack defense.

2019-06-24
Chouikhi, S., Merghem-Boulahia, L., Esseghir, M..  2018.  Energy Demand Scheduling Based on Game Theory for Microgrids. 2018 IEEE International Conference on Communications (ICC). :1–6.

The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.

2019-05-20
Sadkhan, S. B., Reda, D. M..  2018.  A Proposed Security Evaluator for Cryptosystem Based on Information Theory and Triangular Game. 2018 International Conference on Advanced Science and Engineering (ICOASE). :306-311.

The purpose of this research is to propose a new mathematical model, designed to evaluate the security of cryptosystems. This model is a mixture of ideas from two basic mathematical theories, information theory and game theory. The role of information theory is assigning the model with security criteria of the cryptosystems. The role of game theory was to produce the value of the game which is representing the outcome of these criteria, which finally refers to cryptosystem's security. The proposed model support an accurate and mathematical way to evaluate the security of cryptosystems by unifying the criteria resulted from information theory and produce a unique reasonable value.

2019-05-08
Barni, M., Stamm, M. C., Tondi, B..  2018.  Adversarial Multimedia Forensics: Overview and Challenges Ahead. 2018 26th European Signal Processing Conference (EUSIPCO). :962–966.

In recent decades, a significant research effort has been devoted to the development of forensic tools for retrieving information and detecting possible tampering of multimedia documents. A number of counter-forensic tools have been developed as well in order to impede a correct analysis. Such tools are often very effective due to the vulnerability of multimedia forensics tools, which are not designed to work in an adversarial environment. In this scenario, developing forensic techniques capable of granting good performance even in the presence of an adversary aiming at impeding the forensic analysis, is becoming a necessity. This turns out to be a difficult task, given the weakness of the traces the forensic analysis usually relies on. The goal of this paper is to provide an overview of the advances made over the last decade in the field of adversarial multimedia forensics. We first consider the view points of the forensic analyst and the attacker independently, then we review some of the attempts made to simultaneously take into account both perspectives by resorting to game theory. Eventually, we discuss the hottest open problems and outline possible paths for future research.

2019-04-05
Konorski, J..  2018.  Double-Blind Reputation vs. Intelligent Fake VIP Attacks in Cloud-Assisted Interactions. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1637-1641.

We consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects its signature that neither Client nor Sender can modify. Since signature detection is costly, Relay tends to occasionally skip it and trust an object; this prompts Sender to occasionally launch a Fake VIP attack, i.e., demand undue QoS level. In a Stackelberg game setting, Relay employs a trust strategy in the form of a double-blind reputation scheme so as to minimize the signature detection cost and undue QoS provision, anticipating a best-response Fake VIP attack strategy on the part of Sender. We ask whether the double-blind reputation scheme, previously proved resilient to a probabilistic Fake VIP attack strategy, is equally resilient to more intelligent Sender behavior. Two intelligent attack strategies are proposed and analyzed using two-dimensional Markov chains.

2019-04-01
Li, Z., Liao, Q..  2018.  CAPTCHA: Machine or Human Solvers? A Game-Theoretical Analysis 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :18–23.
CAPTCHAs have become an ubiquitous defense used to protect open web resources from being exploited at scale. Traditionally, attackers have developed automatic programs known as CAPTCHA solvers to bypass the mechanism. With the presence of cheap labor in developing countries, hackers now have options to use human solvers. In this research, we develop a game theoretical framework to model the interactions between the defender and the attacker regarding the design and countermeasure of CAPTCHA system. With the result of equilibrium analysis, both parties can determine the optimal allocation of software-based or human-based CAPTCHA solvers. Counterintuitively, instead of the traditional wisdom of making CAPTCHA harder and harder, it may be of best interest of the defender to make CAPTCHA easier. We further suggest a welfare-improving CAPTCHA business model by involving decentralized cryptocurrency computation.
2019-03-28
Sahabandu, D., Xiao, B., Clark, A., Lee, S., Lee, W., Poovendran, R..  2018.  DIFT Games: Dynamic Information Flow Tracking Games for Advanced Persistent Threats. 2018 IEEE Conference on Decision and Control (CDC). :1136-1143.
Dynamic Information Flow Tracking (DIFT) has been proposed to detect stealthy and persistent cyber attacks that evade existing defenses such as firewalls and signature-based antivirus systems. A DIFT defense taints and tracks suspicious information flows across the network in order to identify possible attacks, at the cost of additional memory overhead for tracking non-adversarial information flows. In this paper, we present the first analytical model that describes the interaction between DIFT and adversarial information flows, including the probability that the adversary evades detection and the performance overhead of the defense. Our analytical model consists of a multi-stage game, in which each stage represents a system process through which the information flow passes. We characterize the optimal strategies for both the defense and adversary, and derive efficient algorithms for computing the strategies. Our results are evaluated on a realworld attack dataset obtained using the Refinable Attack Investigation (RAIN) framework, enabling us to draw conclusions on the optimal adversary and defense strategies, as well as the effect of valid information flows on the interaction between adversary and defense.
He, F., Zhang, Y., Liu, H., Zhou, W..  2018.  SCPN-Based Game Model for Security Situational Awareness in the Intenet of Things. 2018 IEEE Conference on Communications and Network Security (CNS). :1-5.
Internet of Things (IoT) is characterized by various of heterogeneous devices that facing numerous threats, which makes modeling security situation of IoT still a certain challenge. This paper defines a Stochastic Colored Petri Net (SCPN) for IoT-based smart environment and then proposes a Game model for security situational awareness. All possible attack paths are computed by the SCPN, and antagonistic behavior of both attackers and defenders are taken into consideration dynamically according to Game Theory (GT). Experiments on two typical attack scenarios in smart home environment demonstrate the effectiveness of the proposed model. The proposed model can form a macroscopic trend curve of the security situation. Analysis of the results shows the capabilities of the proposed model in finding vulnerable devices and potential attack paths, and even facilitating the choice of defense strategy. To the best of our knowledge, this is the first attempt to use Game Theory in the IoT-based SCPN to establish a security situational awareness model for a complex smart environment.
2019-03-11
Raj, R. V., Balasubramanian, K., Nandhini, T..  2018.  Establishing Trust by Detecting Malicious Nodes in Delay Tolerant Network. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1385–1390.
A Network consists of many nodes among which there may be a presence of misbehavior nodes. Delay Tolerant Network (DTN) is a network where the disconnections occur frequently. Store, carry and forward method is followed in DTN. The serious threat against routing in DTN is the selfish behavior. The main intention of selfish node is to save its own energy. Detecting the selfish node in DTN is very difficult. In this paper, a probabilistic misbehavior detection scheme called MAXTRUST has been proposed. Trusted Authority (TA) has been introduced in order to detect the behavior of the nodes periodically based on the task, forwarding history and contact history evidence. After collecting all the evidences from the nodes, the TA would check the inspection node about its behavior. The actions such as punishment or compensation would be given to that particular node based on its behavior. The TA performs probabilistic checking, in order to ensure security at a reduced cost. To further improve the efficiency, dynamic probabilistic inspection has been demonstrated using game theory analysis. The simulation results show the effectiveness and efficiency of the MAXTRUST scheme.
2019-02-22
Poovendran, Radha.  2018.  Dynamic Defense Against Adaptive and Persistent Adversaries. Proceedings of the 5th ACM Workshop on Moving Target Defense. :57-58.

This talk will cover two topics, namely, modeling and design of Moving Target Defense (MTD), and DIFT games for modeling Advanced Persistent Threats (APTs). We will first present a game-theoretic approach to characterizing the trade-off between resource efficiency and defense effectiveness in decoy- and randomization-based MTD. We will then address the game formulation for APTs. APTs are mounted by intelligent and resourceful adversaries who gain access to a targeted system and gather information over an extended period of time. APTs consist of multiple stages, including initial system compromise, privilege escalation, and data exfiltration, each of which involves strategic interaction between the APT and the targeted system. While this interaction can be viewed as a game, the stealthiness, adaptiveness, and unpredictability of APTs imply that the information structure of the game and the strategies of the APT are not readily available. Our approach to modeling APTs is based on the insight that the persistent nature of APTs creates information flows in the system that can be monitored. One monitoring mechanism is Dynamic Information Flow Tracking (DIFT), which taints and tracks malicious information flows through a system and inspects the flows at designated traps. Since tainting all flows in the system will incur significant memory and storage overhead, efficient tagging policies are needed to maximize the probability of detecting the APT while minimizing resource costs. In this work, we develop a multi-stage stochastic game framework for modeling the interaction between an APT and a DIFT, as well as designing an efficient DIFT-based defense. Our model is grounded on APT data gathered using the Refinable Attack Investigation (RAIN) flow-tracking framework. We present the current state of our formulation, insights that it provides on designing effective defenses against APTs, and directions for future work.