Biblio
Conflicts may arise at any time during military debriefing meetings, especially in high intensity deployed settings. When such conflicts arise, it takes time to get everyone back into a receptive state of mind so that they engage in reflective discussion rather than unproductive arguing. It has been proposed by some that the use of social robots equipped with social abilities such as emotion regulation through rapport building may help to deescalate these situations to facilitate critical operational decisions. However, in military settings, the same AI agent used in the pre-brief of a mission may not be the same one used in the debrief. The purpose of this study was to determine whether a brief rapport-building session with a social robot could create a connection between a human and a robot agent, and whether consistency in the embodiment of the robot agent was necessary for maintaining this connection once formed. We report the results of a pilot study conducted at the United States Air Force Academy which simulated a military mission (i.e., Gravity and Strike). Participants' connection with the agent, sense of trust, and overall likeability revealed that early rapport building can be beneficial for military missions.
Complex CPS such as UAS got rapid development these years, but also became vulnerable to GPS spoofing, packets injection, buffer-overflow and other malicious attacks. Ensuring the behaviors of UAS always keeping secure no matter how the environment changes, would be a prospective direction for UAS security. This paper aims at presenting a reactive synthesis-based approach to implement the automatic generation of secure UAS controller. First, we study the operating mechanism of UAS and construct a high-Ievel model consisting of actuator and monitor. Besides, we analyze the security threats of UAS from the perspective of hardware, software and data transmission, and then extract the corresponding specifications of security properties with LTL formulas. Based on the UAS model and security specifications, the controller can be constructed by GR(1) synthesis algorithm, which is a two-player game process between UAV and Environment. Finally, we expand the function of LTLMoP platform to construct the automatons for controller in multi-robots system, which provides secure behavior strategies under several typical UAS attack scenarios.
Industrial robots are playing an important role in now a day industrial productions. However, due to the increasing in robot hardware modules and the rapid expansion of software modules, the reliability of operating systems for industrial robots is facing severe challenges, especially for the light-weight edge computing platforms. Based on current technologies on resource security isolation protection and access control, a novel resource management model for real-time edge system of multiple robot arms is proposed on light-weight edge devices. This novel resource management model can achieve the following functions: mission-critical resource classification, resource security access control, and multi-level security data isolation transmission. We also propose a fault location and isolation model on each lightweight edge device, which ensures the reliability of the entire system. Experimental results show that the robot operating system can meet the requirements of hierarchical management and resource access control. Compared with the existing methods, the fault location and isolation model can effectively locate and deal with the faults generated by the system.
In this paper, we formulate a combinatorial optimization problem that aims to maximize the accuracy of a lower bound estimate of the probability of security of a multi-robot system (MRS), while minimizing the computational complexity involved in its calculation. Security of an MRS is defined using the well-known control theoretic notion of left invertiblility, and the probability of security of an MRS can be calculated using binary decision diagrams (BDDs). The complexity of a BDD depends on the number of disjoint path sets considered during its construction. Taking into account all possible disjoint paths results in an exact probability of security, however, selecting an optimal subset of disjoint paths leads to a good estimate of the probability while significantly reducing computation. To deal with the dynamic nature of MRSs, we introduce two methods: (1) multi-point optimization, a technique that requires some a priori knowledge of the topology of the MRS over time, and (2) online optimization, a technique that does not require a priori knowledge, but must construct BDDs while the MRS is operating. Finally, our approach is validated on an MRS performing a rendezvous objective while exchanging information according to a noisy state agreement process.
Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.
To meet the high requirement of human-machine interaction, quadruped robots with human recognition and tracking capability are studied in this paper. We first introduce a marker recognition system which uses multi-thread laser scanner and retro-reflective markers to distinguish the robot's leader and other objects. When the robot follows leader autonomously, the variant A* algorithm which having obstacle grids extended virtually (EA*) is used to plan the path. But if robots need to track and follow the leader's path as closely as possible, it will trust that the path which leader have traveled is safe enough and uses the incremental form of EA* algorithm (IEA*) to reproduce the trajectory. The simulation and experiment results illustrate the feasibility and effectiveness of the proposed algorithms.
In this paper, we study trust-related human factors in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We compare three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual LOA, the human operator chooses headings for a flocking swarm, issuing new headings as needed. In the fully autonomous LOA, the swarm is redirected automatically by changing headings using a search algorithm. In the mixed-initiative LOA, if performance declines, control is switched from human to swarm or swarm to human. The result of this work extends the current knowledge on human factors in swarm supervisory control. Specifically, the finding that the relationship between trust and performance improved for passively monitoring operators (i.e., improved situation awareness in higher LOAs) is particularly novel in its contradiction of earlier work. We also discover that operators switch the degree of autonomy when their trust in the swarm system is low. Last, our analysis shows that operator's preference for a lower LOA is confirmed for a new domain of swarm control.
The presence of robots is becoming more apparent as technology progresses and the market focus transitions from smart phones to robotic personal assistants such as those provided by Amazon and Google. The integration of robots in our societies is an inevitable tendency in which robots in many forms and with many functionalities will provide services to humans. This calls for an understanding of how humans are affected by both the presence of and the reliance on robots to perform services for them. In this paper we explore the effects that robots have on humans when a service is performed on request. We expose three groups of human participants to three levels of service completion performed by robots. We record and analyse human perceptions such as propensity to trust, competency, responsiveness, sociability, and team work ability. Our results demonstrate that humans tend to trust robots and are more willing to interact with them when they autonomously recover from failure by requesting help from other robots to fulfil their service. This supports the view that autonomy and team working capabilities must be brought into robots in an effort to strengthen trust in robots performing a service.
With recent advances in robotics, it is expected that robots will become increasingly common in human environments, such as in the home and workplaces. Robots will assist and collaborate with humans on a variety of tasks. During these collaborations, it is inevitable that disagreements in decisions would occur between humans and robots. Among factors that lead to which decision a human should ultimately follow, theirs or the robot, trust is a critical factor to consider. This study aims to investigate individuals' behaviors and aspects of trust in a problem-solving situation in which a decision must be made in a bounded amount of time. A between-subject experiment was conducted with 100 participants. With the assistance of a humanoid robot, participants were requested to tackle a cognitive-based task within a given time frame. Each participant was randomly assigned to one of the following initial conditions: 1) a working robot in which the robot provided a correct answer or 2) a faulty robot in which the robot provided an incorrect answer. Impacts of the faulty robot behavior on participant's decision to follow the robot's suggested answer were analyzed. Survey responses about trust were collected after interacting with the robot. Results indicated that the first impression has a significant impact on participant's behavior of trusting a robot's advice during a disagreement. In addition, this study discovered evidence supporting that individuals still have trust in a malfunctioning robot even after they have observed a robot's faulty behavior.
Robots that interact with children are becoming more common in places such as child care and hospital environments. While such robots may mistakenly provide nonsensical information, or have mechanical malfunctions, we know little of how these robot errors are perceived by children, and how they impact trust. This is particularly important when robots provide children with information or instructions, such as in education or health care. Drawing inspiration from established psychology literature investigating how children trust entities who teach or provide them with information (informants), we designed and conducted an experiment to examine how robot errors affect how young children (3-5 years old) trust robots. Our results suggest that children utilize their understanding of people to develop their perceptions of robots, and use this to determine how to interact with robots. Specifically, we found that children developed their trust model of a robot based on the robot's previous errors, similar to how they would for a person. We however failed to replicate other prior findings with robots. Our results provide insight into how children as young as 3 years old might perceive robot errors and develop trust.
Efficient application of Internet of Battlefield Things (IoBT) technology on the battlefield calls for innovative solutions to control and manage the deluge of heterogeneous IoBT devices. This paper presents an innovative paradigm to address heterogeneity in controlling IoBT and IoT devices, enabling multi-force cooperation in challenging battlefield scenarios.
In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.
We propose a method to maintain high resource availability in a networked heterogeneous multi-robot system subject to resource failures. In our model, resources such as sensing and computation are available on robots. The robots are engaged in a joint task using these pooled resources. When a resource on a particular robot becomes unavailable (e.g., a sensor ceases to function), the system automatically reconfigures so that the robot continues to have access to this resource by communicating with other robots. Specifically, we consider the problem of selecting edges to be modified in the system's communication graph after a resource failure has occurred. We define a metric that allows us to characterize the quality of the resource distribution in the network represented by the communication graph. Upon a resource becoming unavailable due to failure, we reconFigure the network so that the resource distribution is brought as close to the maximal resource distribution as possible without a large change in the number of active inter-robot communication links. Our approach uses mixed integer semi-definite programming to achieve this goal. We employ a simulated annealing method to compute a spatial formation that satisfies the inter-robot distances imposed by the topology, along with other constraints. Our method can compute a communication topology, spatial formation, and formation change motion planning in a few seconds. We validate our method in simulation and real-robot experiments with a team of seven quadrotors.
UAANET (UAV Ad hoc Network) is defined as an autonomous system made of swarm of UAVs (Unmanned Aerial Vehicle) and GCS (Ground Control Station). Compared to other types of MANET (Mobile Ad hoc network), UAANET have some unique features and bring several challenges. One of them is the design of routing protocol. It must be efficient for creating routes between nodes and dynamically adjusting to the rapidly changing topology. It must also be secure to protect the integrity of the network against malicious attackers. In this paper, we will present the architecture and the performance evaluation (based on both real-life experimental and emulation studies) of a secure routing protocol called SUAP (Secure UAV Ad hoc routing Protocol). SUAP ensures routing services between nodes to exchange real-time traffic and also guarantees message authentication and integrity to protect the network integrity. Additional security mechanisms were added to detect Wormhole attacks. Wormhole attacks represent a high level of risk for UAV ad hoc network and this is the reason why we choose to focus on this specific multi node attack. Through performance evaluation campaign, our results show that SUAP ensures the expected security services against different types of attacks while providing an acceptable quality of service for real-time data exchanges.
Untethered microrobots actuated by external magnetic fields have drawn extensive attention recently, due to their potential advantages in real-time tracking and targeted delivery in vivo. To control a swarm of microrobots with external fields, however, is still one of the major challenges in this field. In this work, we present new methods to generate ribbon-like and vortex-like microrobotic swarms using oscillating and rotating magnetic fields, respectively. Paramagnetic nanoparticles with a diameter of 400 nm serve as the agents. These two types of swarms exhibits out-of-equilibrium structure, in which the nanoparticles perform synchronised motions. By tuning the magnetic fields, the swarming patterns can be reversibly transformed. Moreover, by increasing the pitch angle of the applied fields, the swarms are capable of performing navigated locomotion with a controlled velocity. This work sheds light on a better understanding for microrobotic swarm behaviours and paves the way for potential biomedical applications.
Securing multi-robot teams against malicious activity is crucial as these systems accelerate towards widespread societal integration. This emerging class of ``physical networks'' requires research into new methods of security that exploit their physical nature. This paper derives a theoretical framework for securing multi-agent consensus against the Sybil attack by using the physical properties of wireless transmissions. Our frame-work uses information extracted from the wireless channels to design a switching signal that stochastically excludes potentially untrustworthy transmissions from the consensus. Intuitively, this amounts to selectively ignoring incoming communications from untrustworthy agents, allowing for consensus to the true average to be recovered with high probability if initiated after a certain observation time T0 that we derive. This work is different from previous work in that it allows for arbitrary malicious node values and is insensitive to the initial topology of the network so long as a connected topology over legitimate nodes in the network is feasible. We show that our algorithm will recover consensus and the true graph over the system of legitimate agents with an error rate that vanishes exponentially with time.
As robotic capabilities improve and robots become more capable as team members, a better understanding of effective human-robot teaming is needed. In this paper, we investigate failures by robots in various team configurations in space EVA operations. This paper describes the methodology of extending and the application of Work Models that Compute (WMC), a computational simulation framework, to model robot failures, interruptions, and the resolutions they require. Using these models, we investigate how different team configurations respond to a robot's failure to correctly complete the task and overall mission. We also identify key factors that impact the teamwork metrics for team designers to keep in mind while assembling teams and assigning taskwork to the agents. We highlight different metrics that these failures impact on team performance through varying components of teaming and interaction that occur. Finally, we discuss the future implications of this work and the future work to be done to investigate function allocation in human-robot teams.
Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots' dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map.
Unmanned systems are increasing in number, while their manning requirements remain the same. To decrease manpower demands, machine learning techniques and autonomy are gaining traction and visibility. One barrier is human perception and understanding of autonomy. Machine learning techniques can result in “black box” algorithms that may yield high fitness, but poor comprehension by operators. However, Interactive Machine Learning (IML), a method to incorporate human input over the course of algorithm development by using neuro-evolutionary machine-learning techniques, may offer a solution. IML is evaluated here for its impact on developing autonomous team behaviors in an area search task. Initial findings show that IML-generated search plans were chosen over plans generated using a non-interactive ML technique, even though the participants trusted them slightly less. Further, participants discriminated each of the two types of plans from each other with a high degree of accuracy, suggesting the IML approach imparts behavioral characteristics into algorithms, making them more recognizable. Together the results lay the foundation for exploring how to team humans successfully with ML behavior.