Visible to the public Biblio

Found 7504 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-04-14
Tikekar, Priyanka C., Sherekar, Swati S., Thakre, Vilas M..  2022.  An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
Yamaguchi, Shingo, Makihara, Daisuke.  2022.  On Resident Strategy for White-Hat Botnet in Botnet Defense System. 2022 IEEE International Conference on Consumer Electronics - Taiwan. :189–190.
This paper proposes a new strategy, named resident strategy, for defending IoT networks from repeated infection of malicious botnets in the Botnet Defense System (BDS). The resident strategy aims to make a small-scale white-hat botnet resident in the network respond immediately to invading malicious botnets. The BDS controls the resident white-hat botnet with two parameters: upper and lower number of its bots. The lower limit prevents the white-hat botnet from disappearing, while the upper limit prevents it from filling up the network. The BDS with the strategy was modeled with agent-oriented Petri nets and was evaluated through the simulation. The result showed that the proposed strategy was able to deal with repeatedly invading malicious botnets with about half the scale of the conventional white-hat botnet.
ISSN: 2575-8284
Lee, Bowhyung, Han, Donghwa, Lee, Namyoon.  2022.  Demo: Real-Time Implementation of Block Orthogonal Sparse Superposition Codes. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :1–2.
Short-packet communication is a key enabler of various Internet of Things applications that require higher-level security. This proposal briefly reviews block orthogonal sparse superposition (BOSS) codes, which are applicable for secure short-packet transmissions. In addition, following the IEEE 802.11a Wi-Fi standards, we demonstrate the real-time performance of secure short packet transmission using a software-defined radio testbed to verify the feasibility of BOSS codes in a multi-path fading channel environment.
ISSN: 2694-2941
Boche, Holger, Cai, Minglai, Wiese, Moritz.  2022.  Mosaics of Combinatorial Designs for Semantic Security on Quantum Wiretap Channels. 2022 IEEE International Symposium on Information Theory (ISIT). :856–861.
We study semantic security for classical-quantum channels. Our security functions are functional forms of mosaics of combinatorial designs. We extend methods in [25] from classical channels to classical-quantum channels to demonstrate that mosaics of designs ensure semantic security for classical-quantum channels, and are also capacity achieving coding schemes. An advantage of these modular wiretap codes is that we provide explicit code constructions that can be implemented in practice for every channel, given an arbitrary public code.
ISSN: 2157-8117
Liu, Zhiwei, Du, Qinghe.  2022.  Self-coupling Encryption via Polar Codes for Secure Wireless Transmission. 2022 International Wireless Communications and Mobile Computing (IWCMC). :384–388.
In this paper, we studies secure wireless transmission using polar codes which based on self-coupling encryption for relay-wiretap channel. The coding scheme proposed in this paper divide the confidential message into two parts, one part used to generate key through a specific extension method, and then use key to perform coupling encryption processing on another part of the confidential message to obtain the ciphertext. The ciphertext is transmitted in the split-channels which are good for relay node, legitimate receiver and eavesdropper at the same time. Legitimate receiver can restore key with the assistance of relay node, and then uses the joint successive cancellation decoding algorithm to restore confidential message. Even if eavesdropper can correctly decode the ciphertext, he still cannot restore the confidential message due to the lack of key. Simulation results show that compared with the previous work, our coding scheme can increase the average code rate to some extent on the premise of ensuring the reliability and security of transmission.
ISSN: 2376-6506
Yang, Dongli, Huang, Jingxuan, Liu, Xiaodong, Sun, Ce, Fei, Zesong.  2022.  A Polar Coding Scheme for Achieving Secrecy of Fading Wiretap Channels in UAV Communications. 2022 IEEE/CIC International Conference on Communications in China (ICCC). :468–473.
The high maneuverability of the unmanned aerial vehicle (UAV), facilitating fast and flexible deployment of communication infrastructures, brings potentially valuable opportunities to the future wireless communication industry. Nevertheless, UAV communication networks are faced with severe security challenges since air to ground (A2G) communications are more vulnerable to eavesdropping attacks than terrestrial communications. To solve the problem, we propose a coding scheme that hierarchically utilizes polar codes in order to address channel multi-state variation for UAV wiretap channels, without the instantaneous channel state information (CSI) known at the transmitter. The theoretical analysis and simulation results show that the scheme achieves the security capacity of the channel and meets the conditions of reliability and security.
ISSN: 2377-8644
Ma, Xiao, Wang, Yixin, Zhu, Tingting.  2022.  A New Framework for Proving Coding Theorems for Linear Codes. 2022 IEEE International Symposium on Information Theory (ISIT). :2768–2773.

A new framework is presented in this paper for proving coding theorems for linear codes, where the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. In particular, this new framework unifies the source coding theorems and the channel coding theorems. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over binary-input output symmetric (BIOS) channels and also entropy-achieving for Bernoulli sources.

ISSN: 2157-8117

Peng, Haifeng, Cao, Chunjie, Sun, Yang, Li, Haoran, Wen, Xiuhua.  2022.  Blind Identification of Channel Codes under AWGN and Fading Conditions via Deep Learning. 2022 International Conference on Networking and Network Applications (NaNA). :67–73.
Blind identification of channel codes is crucial in intelligent communication and non-cooperative signal processing, and it plays a significant role in wireless physical layer security, information interception, and information confrontation. Previous researches show a high computation complexity by manual feature extractions, in addition, problems of indisposed accuracy and poor robustness are to be resolved in a low signal-to-noise ratio (SNR). For solving these difficulties, based on deep residual shrinkage network (DRSN), this paper proposes a novel recognizer by deep learning technologies to blindly distinguish the type and the parameter of channel codes without any prior knowledge or channel state, furthermore, feature extractions by the neural network from codewords can avoid intricate calculations. We evaluated the performance of this recognizer in AWGN, single-path fading, and multi-path fading channels, the results of the experiments showed that the method we proposed worked well. It could achieve over 85 % of recognition accuracy for channel codes in AWGN channels when SNR is not lower than 4dB, and provide an improvement of more than 5% over the previous research in recognition accuracy, which proves the validation of the proposed method.
Zhao, Yizhi, Wu, Lingjuan, Xu, Shiwei.  2022.  Secure Polar Coding with Non-stationary Channel Polarization. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :393–397.

In this work, we consider the application of the nonstationary channel polarization theory on the wiretap channel model with non-stationary blocks. Particularly, we present a time-bit coding scheme which is a secure polar codes that constructed on the virtual bit blocks by using the non-stationary channel polarization theory. We have proven that this time-bit coding scheme achieves reliability, strong security and the secrecy capacity. Also, compared with regular secure polar coding methods, our scheme has a lower coding complexity for non-stationary channel blocks.

Hwang, Seunggyu, Lee, Hyein, Kim, Sooyoung.  2022.  Evaluation of physical-layer security schemes for space-time block coding under imperfect channel estimation. 2022 27th Asia Pacific Conference on Communications (APCC). :580–585.

With the advent of massive machine type of communications, security protection becomes more important than ever. Efforts have been made to impose security protection capability to physical-layer signal design, so called physical-layer security (PLS). The purpose of this paper is to evaluate the performance of PLS schemes for a multi-input-multi-output (MIMO) systems with space-time block coding (STBC) under imperfect channel estimation. Three PLS schemes for STBC schemes are modeled and their bit error rate (BER) performances are evaluated under various channel estimation error environments, and their performance characteristics are analyzed.

ISSN: 2163-0771

Salman, Hanadi, Naderi, Sanaz, Arslan, Hüseyin.  2022.  Channel-Dependent Code Allocation for Downlink MC-CDMA System Aided Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Spreading codes are the core of the spread spectrum transmission. In this paper, a novel channel-dependent code allocation procedure for enhancing security in multi-carrier code division multiple access (MC-CDMA) system is proposed and investigated over frequency-selective fading. The objective of the proposed technique is to assign the codes to every subcarrier of active/legitimate receivers (Rxs) based on their channel frequency response (CFR). By that, we ensure security for legitimate Rxs against eavesdropping while preserving mutual confidentiality between the legitimate Rxs themselves. To do so, two assigning modes; fixed assigning mode (FAM) and adaptive assigning mode (AAM), are exploited. The effect of the channel estimation error and the number of legitimate Rxs on the bit error rate (BER) performance is studied. The presented simulations show that AAM provides better security with a complexity trade-off compared to FAM. While the latter is more robust against the imperfection of channel estimation.
ISSN: 2577-2465
2023-03-31
Bassit, Amina, Hahn, Florian, Veldhuis, Raymond, Peter, Andreas.  2022.  Multiplication-Free Biometric Recognition for Faster Processing under Encryption. 2022 IEEE International Joint Conference on Biometrics (IJCB). :1–9.

The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.

ISSN: 2474-9699

Magfirawaty, Magfirawaty, Budi Setiawan, Fauzan, Yusuf, Muhammad, Kurniandi, Rizki, Nafis, Raihan Fauzan, Hayati, Nur.  2022.  Principal Component Analysis and Data Encryption Model for Face Recognition System. 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). :381–386.

Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.

Sahoo, Subhaluxmi.  2022.  Cancelable Retinal Biometric method based on maximum bin computation and histogram bin encryption using modified Hill cipher. 2022 IEEE Delhi Section Conference (DELCON). :1–5.

Cancelable biometric is a new era of technology that deals with the protection of the privacy content of a person which itself helps in protecting the identity of a person. Here the biometric information instead of being stored directly on the authentication database is transformed into a non-invertible coded format that will be utilized for providing access. The conversion into an encrypted code requires the provision of an encryption key from the user side. Both invertible and non-invertible coding techniques are there but non-invertible one provides additional security to the user. In this paper, a non-invertible cancelable biometric method has been proposed where the biometric image information is canceled and encoded into a code using a user-provided encryption key. This code is generated from the image histogram after continuous bin updation to the maximal value and then it is encrypted by the Hill cipher. This code is stored on the database instead of biometric information. The technique is applied to a set of retinal information taken from the Indian Diabetic Retinopathy database.

Saraswat, Deepti, Ladhiya, Karan, Bhattacharya, Pronaya, Zuhair, Mohd.  2022.  PHBio: A Pallier Homomorphic Biometric Encryption Scheme in Healthcare 4.0 Ecosystems. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :306–312.

In healthcare 4.0 ecosystems, authentication of healthcare information allows health stakeholders to be assured that data is originated from correct source. Recently, biometric based authentication is a preferred choice, but as the templates are stored on central servers, there are high chances of copying and generating fake biometrics. An adversary can forge the biometric pattern, and gain access to critical health systems. Thus, to address the limitation, the paper proposes a scheme, PHBio, where an encryption-based biometric system is designed prior before storing the template to the server. Once a user provides his biometrics, the authentication process does not decrypt the data, rather uses a homomorphic-enabled Paillier cryptosystem. The scheme presents the encryption and the comparison part which is based on euclidean distance (EUD) strategy between the user input and the stored template on the server. We consider the minimum distance, and compare the same with a predefined threshold distance value to confirm a biometric match, and authenticate the user. The scheme is compared against parameters like accuracy, false rejection rates (FARs), and execution time. The proposed results indicate the validity of the scheme in real-time health setups.

Gupta, Ashutosh, Agrawal, Anita.  2022.  Advanced Encryption Standard Algorithm with Optimal S-box and Automated Key Generation. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :2112–2115.

Advanced Encryption Standard (AES) algorithm plays an important role in a data security application. In general S-box module in AES will give maximum confusion and diffusion measures during AES encryption and cause significant path delay overhead. In most cases, either L UTs or embedded memories are used for S- box computations which are vulnerable to attacks that pose a serious risk to real-world applications. In this paper, implementation of the composite field arithmetic-based Sub-bytes and inverse Sub-bytes operations in AES is done. The proposed work includes an efficient multiple round AES cryptosystem with higher-order transformation and composite field s-box formulation with some possible inner stage pipelining schemes which can be used for throughput rate enhancement along with path delay optimization. Finally, input biometric-driven key generation schemes are used for formulating the cipher key dynamically, which provides a higher degree of security for the computing devices.

Bauspieß, Pia, Olafsson, Jonas, Kolberg, Jascha, Drozdowski, Pawel, Rathgeb, Christian, Busch, Christoph.  2022.  Improved Homomorphically Encrypted Biometric Identification Using Coefficient Packing. 2022 International Workshop on Biometrics and Forensics (IWBF). :1–6.

Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.

Román, Roberto, Arjona, Rosario, López-González, Paula, Baturone, Iluminada.  2022.  A Quantum-Resistant Face Template Protection Scheme using Kyber and Saber Public Key Encryption Algorithms. 2022 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–5.

Considered sensitive information by the ISO/IEC 24745, biometric data should be stored and used in a protected way. If not, privacy and security of end-users can be compromised. Also, the advent of quantum computers demands quantum-resistant solutions. This work proposes the use of Kyber and Saber public key encryption (PKE) algorithms together with homomorphic encryption (HE) in a face recognition system. Kyber and Saber, both based on lattice cryptography, were two finalists of the third round of NIST post-quantum cryptography standardization process. After the third round was completed, Kyber was selected as the PKE algorithm to be standardized. Experimental results show that recognition performance of the non-protected face recognition system is preserved with the protection, achieving smaller sizes of protected templates and keys, and shorter execution times than other HE schemes reported in literature that employ lattices. The parameter sets considered achieve security levels of 128, 192 and 256 bits.

ISSN: 1617-5468

Chang, Liang.  2022.  The Research on Fingerprint Encryption Algorithm Based on The Error Correcting Code. 2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA). :258–262.

In this paper, an overall introduction of fingerprint encryption algorithm is made, and then a fingerprint encryption algorithm with error correction is designed by adding error correction mechanism. This new fingerprint encryption algorithm can produce stochastic key in the form of multinomial coefficient by using the binary system sequencer, encrypt fingerprint, and use the Lagrange difference value to restore the multinomial during authenticating. Due to using the cyclic redundancy check code to find out the most accurate key, the accuracy of this algorithm can be ensured. Experimental result indicates that the fuzzy vault algorithm with error correction can well realize the template protection, and meet the requirements of biological information security protection. In addition, it also indicates that the system's safety performance can be enhanced by chanaing the key's length.

Hofbauer, Heinz, Martínez-Díaz, Yoanna, Luevano, Luis Santiago, Méndez-Vázquez, Heydi, Uhl, Andreas.  2022.  Utilizing CNNs for Cryptanalysis of Selective Biometric Face Sample Encryption. 2022 26th International Conference on Pattern Recognition (ICPR). :892–899.

When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.

ISSN: 2831-7475

L, Shammi, Milind, Emilin Shyni, C., Ul Nisa, Khair, Bora, Ravi Kumar, Saravanan, S..  2022.  Securing Biometric Data with Optimized Share Creation and Visual Cryptography Technique. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :673–679.

Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.

Yang, Jing, Yang, Yibiao, Sun, Maolin, Wen, Ming, Zhou, Yuming, Jin, Hai.  2022.  Isolating Compiler Optimization Faults via Differentiating Finer-grained Options. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :481–491.

Code optimization is an essential feature for compilers and almost all software products are released by compiler optimizations. Consequently, bugs in code optimization will inevitably cast significant impact on the correctness of software systems. Locating optimization bugs in compilers is challenging as compilers typically support a large amount of optimization configurations. Although prior studies have proposed to locate compiler bugs via generating witness test programs, they are still time-consuming and not effective enough. To address such limitations, we propose an automatic bug localization approach, ODFL, for locating compiler optimization bugs via differentiating finer-grained options in this study. Specifically, we first disable the fine-grained options that are enabled by default under the bug-triggering optimization levels independently to obtain bug-free and bug-related fine-grained options. We then configure several effective passing and failing optimization sequences based on such fine-grained options to obtain multiple failing and passing compiler coverage. Finally, such generated coverage information can be utilized via Spectrum-Based Fault Localization formulae to rank the suspicious compiler files. We run ODFL on 60 buggy GCC compilers from an existing benchmark. The experimental results show that ODFL significantly outperforms the state-of-the-art compiler bug isolation approach RecBi in terms of all the evaluated metrics, demonstrating the effectiveness of ODFL. In addition, ODFL is much more efficient than RecBi as it can save more than 88% of the time for locating bugs on average.

ISSN: 1534-5351

Shi, Huan, Hui, Bo, Hu, Biao, Gu, RongJie.  2022.  Construction of Intelligent Emergency Response Technology System Based on Big Data Technology. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :59–62.
This paper analyzes the problems existing in the existing emergency management technology system in China from various perspectives, and designs the construction of intelligent emergency system in combination with the development of new generation of Internet of Things, big data, cloud computing and artificial intelligence technology. The overall design is based on scientific and technological innovation to lead the reform of emergency management mechanism and process reengineering to build an intelligent emergency technology system characterized by "holographic monitoring, early warning, intelligent research and accurate disposal". To build an intelligent emergency management system that integrates intelligent monitoring and early warning, intelligent emergency disposal, efficient rehabilitation, improvement of emergency standards, safety and operation and maintenance construction.
Lu, Xiuyun, Zhao, Wenxing, Zhu, Yuquan.  2022.  Research on Network Security Protection System Based on Computer Big Data Era. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1487–1490.
This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edge-cloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining end-address hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
Zhang, Hongjun, Cheng, Shuyan, Cai, Qingyuan, Jiang, Xiao.  2022.  Privacy security protection based on data life cycle. 2022 World Automation Congress (WAC). :433–436.
Large capacity, fast-paced, diversified and high-value data are becoming a hotbed of data processing and research. Privacy security protection based on data life cycle is a method to protect privacy. It is used to protect the confidentiality, integrity and availability of personal data and prevent unauthorized access or use. The main advantage of using this method is that it can fully control all aspects related to the information system and its users. With the opening of the cloud, attackers use the cloud to recalculate and analyze big data that may infringe on others' privacy. Privacy protection based on data life cycle is a means of privacy protection based on the whole process of data production, collection, storage and use. This approach involves all stages from the creation of personal information by individuals (e.g. by filling out forms online or at work) to destruction after use for the intended purpose (e.g. deleting records). Privacy security based on the data life cycle ensures that any personal information collected is used only for the purpose of initial collection and destroyed as soon as possible.
ISSN: 2154-4824