Yu, Xiujun, Chen, Huifang, Xie, Lei.
2021.
A Secure Communication Protocol between Sensor Nodes and Sink Node in Underwater Acoustic Sensor Networks. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :279—283.
Underwater acoustic sensor networks (UASNs) have been receiving more and more attention due to their wide applications and the marine data collection is one of the important applications of UASNs. However, the openness and unreliability of underwater acoustic communication links and the easy capture of underwater wireless devices make UASNs vulnerable to various attacks. On the other hand, due to the limited resources of underwater acoustic network nodes, the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels, many mature security mechanisms in terrestrial wireless sensor networks cannot be applied in the underwater environment [1]. In this paper, a secure communication protocol for marine data collection was proposed to ensure the confidentiality and data integrity of communication between under sensor nodes and the sink node in UASNs.
Peng, Zheng, Han, Xu, Ye, Yun.
2021.
Enhancing Underwater Sensor Network Security with Coordinated Communications. ICC 2021 - IEEE International Conference on Communications. :1—6.
In recent years, the underwater sensor network has emerged as a promising solution for a wide range of marine applications. The underwater wireless sensors are usually designed to operate in open water, where eavesdropping can be a serious issue. Existing work either utilizes cryptography that is computationally intensive or requires expensive hardware. In this paper, we present a coordinated multi-point transmission based protocol to improve network security. The proposed protocol dynamically pairs sensors for coordinated communications to undermine the eavesdroppers’ capability. Our preliminary results indicate that the underwater sensor network security can be enhanced using the proposed method, especially in applications where cryptography or special hardware are not suitable.
Gai, Lei, Li, Wendong, Wei, Yu, Yu, Yonghe, Yang, Yang, Zhang, Xinjian, Zhu, Qiming, Wang, Guoyu, Gu, Yongjian.
2021.
Secure underwater optical communications based on quantum technologies. 2021 19th International Conference on Optical Communications and Networks (ICOCN). :1—3.
Underwater wireless optical communications are studied through single photon detection, photon states modulation and quantum key encryption. These studies will promote the development of optical communication applications in underwater vehicles and underwater sensor networks.
Hariyale, Ashish, Thawre, Aakriti, Chandavarkar, B. R..
2021.
Mitigating unsecured data forwarding related attack of underwater sensor network. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—5.
To improve communication underwater, the underwater sensor networks (UWSN) provide gains for many different underwater applications, like Underwater Data-centers, Aquatic Monitoring, Tsunami Monitoring Systems, Aquatic Monitoring, Underwater Oil Field Discovery, Submarine Target Localization, Surveilling Water Territory of the Country via UWSN, Submarine Target Localization and many more. underwater applications are dependent on secure data communication in an underwater environment, so Data transmission in Underwater Sensor Network is a need of the future. Underwater data transmission itself is a big challenge due to various limitations of underwater communication mediums like lower bandwidth, multipath effect, path loss, propagation delay, noise, Doppler spread, and so on. These challenges make the underwater networks one of the most vulnerable networks for many different security attacks like sinkhole, spoofing, wormhole, misdirection, etc. It causes packets unable to be delivered to the destination, and even worse forward them to malicious nodes. A compromised node, which may be a router, intercepts packets going through it, and selectively drops them or can perform some malicious activity. This paper presents a solution to Mitigate unsecured data forwarding related attacks of an underwater sensor network, our solution uses a pre-shared key to secure communication and hashing algorithm to maintain the integrity of stored locations at head node and demonstration of attack and its mitigation done on Unetstack software.
Hörmann, Leander B., Pötsch, Albert, Kastl, Christian, Priller, Peter, Springer, Andreas.
2021.
Towards a Distributed Testbed for Wireless Embedded Devices for Industrial Applications. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :135–138.
Wireless embedded devices are key elements of Internet-of-Things (IoT) and industrial IoT (IIoT) applications. The complexity of these devices as well as the number of connected devices to networks increase steadily. The high intricacy of the overall system makes it error-prone and vulnerable to attacks and leads to the need to test individual parts or even the whole system. Therefore, this paper presents the concept of a flexible and distributed testbed to evaluate correct behavior in various operation or attack scenarios. It is based on the Robot Operating System (ROS) as communication framework to ensure modularity and expandability. The testbed integrates RF-jamming and measurement devices to evaluate remote attack scenarios and interference issues. An energy harvesting emulation cell is used to evaluate different real-world energy harvesting scenarios. A climatic test chamber allows to investigate the influence of temperature and humidity conditions on the system-under-test. As a testbed application scenario, the automated evaluation of an energy harvesting wireless sensor network designed to instrument automotive engine test benches is presented.