Visible to the public Biblio

Filters: Keyword is ip protection  [Clear All Filters]
2020-07-30
Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

Perez, Claudio A., Estévez, Pablo A, Galdames, Francisco J., Schulz, Daniel A., Perez, Juan P., Bastías, Diego, Vilar, Daniel R..  2018.  Trademark Image Retrieval Using a Combination of Deep Convolutional Neural Networks. 2018 International Joint Conference on Neural Networks (IJCNN). :1—7.
Trademarks are recognizable images and/or words used to distinguish various products or services. They become associated with the reputation, innovation, quality, and warranty of the products. Countries around the world have offices for industrial/intellectual property (IP) registration. A new trademark image in application for registration should be distinct from all the registered trademarks. Due to the volume of trademark registration applications and the size of the databases containing existing trademarks, it is impossible for humans to make all the comparisons visually. Therefore, technological tools are essential for this task. In this work we use a pre-trained, publicly available Convolutional Neural Network (CNN) VGG19 that was trained on the ImageNet database. We adapted the VGG19 for the trademark image retrieval (TIR) task by fine tuning the network using two different databases. The VGG19v was trained with a database organized with trademark images using visual similarities, and the VGG19c was trained using trademarks organized by using conceptual similarities. The database for the VGG19v was built using trademarks downloaded from the WEB, and organized by visual similarity according to experts from the IP office. The database for the VGG19c was built using trademark images from the United States Patent and Trademarks Office and organized according to the Vienna conceptual protocol. The TIR was assessed using the normalized average rank for a test set from the METU database that has 922,926 trademark images. We computed the normalized average ranks for VGG19v, VGG19c, and for a combination of both networks. Our method achieved significantly better results on the METU database than those published previously.
Ernawan, Ferda, Kabir, Muhammad Nomani.  2018.  A blind watermarking technique using redundant wavelet transform for copyright protection. 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA). :221—226.
A digital watermarking technique is an alternative method to protect the intellectual property of digital images. This paper presents a hybrid blind watermarking technique formulated by combining RDWT with SVD considering a trade-off between imperceptibility and robustness. Watermark embedding locations are determined using a modified entropy of the host image. Watermark embedding is employed by examining the orthogonal matrix U obtained from the hybrid scheme RDWT-SVD. In the proposed scheme, the watermark image in binary format is scrambled by Arnold chaotic map to provide extra security. Our scheme is tested under different types of signal processing and geometrical attacks. The test results demonstrate that the proposed scheme provides higher robustness and less distortion than other existing schemes in withstanding JPEG2000 compression, cropping, scaling and other noises.
Holland, Martin, Stjepandić, Josip, Nigischer, Christopher.  2018.  Intellectual Property Protection of 3D Print Supply Chain with Blockchain Technology. 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). :1—8.
Within “Industrie 4.0” approach 3D printing technology is characterized as one of the disruptive innovations. Conventional supply chains are replaced by value-added networks. The spatially distributed development of printed components, e.g. for the rapid delivery of spare parts, creates a new challenge when differentiating between “original part”, “copy” or “counterfeit” becomes necessary. This is especially true for safety-critical products. Based on these changes classic branded products adopt the characteristics of licensing models as we know them in the areas of software and digital media. This paper describes the use of digital rights management as a key technology for the successful transition to Additive Manufacturing methods and a key for its commercial implementation and the prevention of intellectual property theft. Risks will be identified along the process chain and solution concepts are presented. These are currently being developed by an 8-partner project named SAMPL (Secure Additive Manufacturing Platform).
Cammarota, Rosario, Banerjee, Indranil, Rosenberg, Ofer.  2018.  Machine Learning IP Protection. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—3.

Machine learning, specifically deep learning is becoming a key technology component in application domains such as identity management, finance, automotive, and healthcare, to name a few. Proprietary machine learning models - Machine Learning IP - are developed and deployed at the network edge, end devices and in the cloud, to maximize user experience. With the proliferation of applications embedding Machine Learning IPs, machine learning models and hyper-parameters become attractive to attackers, and require protection. Major players in the semiconductor industry provide mechanisms on device to protect the IP at rest and during execution from being copied, altered, reverse engineered, and abused by attackers. In this work we explore system security architecture mechanisms and their applications to Machine Learning IP protection.

Sengupta, Anirban, Roy, Dipanjan.  2018.  Reusable intellectual property core protection for both buyer and seller. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—3.
This paper presents a methodology for IP core protection of CE devices from both buyer's and seller's perspective. In the presented methodology, buyer fingerprint is embedded along seller watermark during architectural synthesis phase of IP core design. The buyer fingerprint is inserted during scheduling phase while seller watermark is implanted during register allocation phase of architectural synthesis process. The presented approach provides a robust mechanisms of IP core protection for both buyer and seller at zero area overhead, 1.1 % latency overhead and 0.95 % design cost overhead compared to a similar approach (that provides only protection to IP seller).
Zapirain, Esteban Aitor, Maris Massa, Stella.  2018.  Intellectual Property Management in Serious Games. 2018 IEEE Biennial Congress of Argentina (ARGENCON). :1—5.
The aim of this work is to perform an analysis on Technology Transfer strategies for the development of Serious Games at Public National Universities. The results can be extrapolated to other research topics and institutions. First of all, the University role as a producer of knowledge is studied, and possible scenarios for Technology Transfer to third-parties are considered. Moreover, the actors involved in the research and development processes and their corresponding Intellectual Property rights on the Research Results are identified and analysed. Finally, an Intellectual Property Rights protection analysis is undertaken to the different components of a Serious Game type of product, through the modalities of invention patents, utility models, industrial models and designs, brands and author rights. The work concludes that public universities are best fitted as knowledge factories, and the most promising scenario in Technology Transfer is that universities manage their Intellectual Property Rights and licence them to third-party institutions to handle commercialization, while keeping favorable conditions to finance subsequent research and ensuring that products derived from Research Results will be reachable by the society.
TÎTU, Mihail Aurel, POP, Alina Bianca, ŢÎŢU, Ştefan.  2018.  The correlation between intellectual property management and quality management in the modern knowledge-based economy. 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—6.
The aim of this research paper is to highlight the intellectual property place and role within an industrial knowledge-based organization which performs design activities. The research begins by presenting the importance of integrating intellectual property policy implementation with quality policy. The research is based on the setting of objectives in the intellectual property field. This research also establishes some intellectual property strategies, and improvement measures for intellectual property protection management. The basis for these activities is correlation of the quality policy with an intellectual property policy, as well as the point of strength identified in the studied organization. The issues discussed in this scientific paper conclude on the possibility of the implementation of standards in the intellectual property field.
Wang, Tianhao, Kerschbaum, Florian.  2019.  Attacks on Digital Watermarks for Deep Neural Networks. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2622—2626.
Training deep neural networks is a computationally expensive task. Furthermore, models are often derived from proprietary datasets that have been carefully prepared and labelled. Hence, creators of deep learning models want to protect their models against intellectual property theft. However, this is not always possible, since the model may, e.g., be embedded in a mobile app for fast response times. As a countermeasure watermarks for deep neural networks have been developed that embed secret information into the model. This information can later be retrieved by the creator to prove ownership. Uchida et al. proposed the first such watermarking method. The advantage of their scheme is that it does not compromise the accuracy of the model prediction. However, in this paper we show that their technique modifies the statistical distribution of the model. Using this modification we can not only detect the presence of a watermark, but even derive its embedding length and use this information to remove the watermark by overwriting it. We show analytically that our detection algorithm follows consequentially from their embedding algorithm and propose a possible countermeasure. Our findings shall help to refine the definition of undetectability of watermarks for deep neural networks.
Liang, Tung-Che, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Programmable Daisychaining of Microelectrodes for IP Protection in MEDA Biochips. 2019 IEEE International Test Conference (ITC). :1—10.

As digital microfluidic biochips (DMFBs) make the transition to the marketplace for commercial exploitation, security and intellectual property (IP) protection are emerging as important design considerations. Recent studies have shown that DMFBs are vulnerable to reverse engineering aimed at stealing biomolecular protocols (IP theft). The IP piracy of proprietary protocols may lead to significant losses for pharmaceutical and biotech companies. The micro-electrode-dot-array (MEDA) is a next-generation DMFB platform that supports real-time sensing of droplets and has the added advantage of important security protections. However, real-time sensing offers opportunities to an attacker to steal the biochemical IP. We show that the daisychaining of microelectrodes and the use of one-time-programmability in MEDA biochips provides effective bitstream scrambling of biochemical protocols. To examine the strength of this solution, we develop a SAT attack that can unscramble the bitstreams through repeated observations of bioassays executed on the MEDA platform. Based on insights gained from the SAT attack, we propose an advanced defense against IP theft. Simulation results using real-life biomolecular protocols confirm that while the SAT attack is effective for simple instances, our advanced defense can thwart it for realistic MEDA biochips and real-life protocols.

Sun, Peiqi, Cui, Aijiao.  2019.  A New Pay-Per-Use Scheme for the Protection of FPGA IP. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1—5.
Field-programmable gate arrays (FPGAs) are widely applied in various fields for its merit of reconfigurability. The reusable intellectual property (IP) design blocks are usually adopted in the more complex FPGA designs to shorten design cycle. IP infringement hence becomes a concern. In this paper, we propose a new pay-per-use scheme using the lock and key mechanism for the protection of FPGA IP. Physical Unclonable Function (PUF) is adopted to generate a unique ID for each IP instance. An extra Finite State Machine (FSM) is introduced for the secure retrieval of PUF information by the FPGA IP vendor. The lock is implemented on the original FSM. Only when the FPGA developer can provide a correct license, can the FSM be unlocked and start normal operation. The FPGA IP can hence be protected from illegal use or distribution. The scheme is applied on some benchmarks and the experimental results show that it just incurs acceptably low overhead while it can resist typical attacks.
Jaworowska, Małgorzata, Śniadkowski, Mariusz, Wac-Włodarczyk, Andrzej.  2019.  Protection of intellectual property as part of developing the skills of future engineers on their way to innovation. 2019 29th Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE). :1—6.
Diagnostic research methods were designed to draw attention to the needs of future engineers in the field of innovative methods of acquiring knowledge, skills and competencies in the protection of intellectual property in order to prepare for functioning in the economy 4.0.
Showkatramani, Girish J., Khatri, Nidhi, Landicho, Arlene, Layog, Darwin.  2019.  A Secure Permissioned Blockchain Based System for Trademarks. 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON). :135—139.
A trademark may be a word, phrase, symbol, sound, color, scent or design, or combination of these, that identifies and distinguishes the products or services of a particular source from those of others. Obtaining a trademark is a complex, time intensive and costly process that involves varied steps before the trademark can be registered including searching prior trademarks, filing of the trademark application, review of the trademark application and final publication for opposition by the public. Currently, the process of trademark registration, renewal and validation faces numerous challenges such as the requirement for registration in different jurisdictions, maintenance of centralized databases in different jurisdictions, proving the authenticity of the physical trademark documents, identifying the violation and abuse of the intellectual property etc. to name a few. Recently, blockchain technology has shown great potential in a variety of industries such as finance, education, energy and resource management, healthcare, due to its decentralization and non-tampering features. Furthermore, in the recent years, smart contracts have attracted increased attention due to the popularity of blockchains. In this study, we have utilized Hyperledger fabric as the permissioned blockchain framework along with smart contracts to provide solution to the financial, procedural, enforcement and protection related challenges of the current trademark system. Our blockchain based application seeks to provide a secure, decentralized, immutable trademark system that can be utilized by the intellectual property organizations across different jurisdictions for easily and effectively registering, renewing, validating and distributing digital trademark certificates.
Deeba, Farah, Tefera, Getenet, Kun, She, Memon, Hira.  2019.  Protecting the Intellectual Properties of Digital Watermark Using Deep Neural Network. 2019 4th International Conference on Information Systems Engineering (ICISE). :91—95.

Recently in the vast advancement of Artificial Intelligence, Machine learning and Deep Neural Network (DNN) driven us to the robust applications. Such as Image processing, speech recognition, and natural language processing, DNN Algorithms has succeeded in many drawbacks; especially the trained DNN models have made easy to the researchers to produces state-of-art results. However, sharing these trained models are always a challenging task, i.e. security, and protection. We performed extensive experiments to present some analysis of watermark in DNN. We proposed a DNN model for Digital watermarking which investigate the intellectual property of Deep Neural Network, Embedding watermarks, and owner verification. This model can generate the watermarks to deal with possible attacks (fine tuning and train to embed). This approach is tested on the standard dataset. Hence this model is robust to above counter-watermark attacks. Our model accurately and instantly verifies the ownership of all the remotely expanded deep learning models without affecting the model accuracy for standard information data.

Yang, Fan, Shi, Yue, Wu, Qingqing, Li, Fei, Zhou, Wei, Hu, Zhiyan, Xiong, Naixue, Zhang, Yong.  2019.  The Survey on Intellectual Property Based on Blockchain Technology. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :743—748.
The characteristics of decentralization, tamper-resistance and transaction anonymity of blockchain can resolve effectively the problems in traditional intellectual property such as the difficulty of electronic obtaining for evidence, the high cost and low compensation when safeguarding the copyrights. Blockchain records the information through encryption algorithm, removes the third party, and stores the information in all nodes to prevent the information from being tampered with, so as to realize the protection of intellectual property. Starting from the bottom layer of blockchain, this paper expounds in detail the characteristics and the technical framework of blockchain. At the same time, according to the existing problems in transaction throughput, time delay and resource consumption of blockchain system, optimization mechanisms such as cross-chain and proof of stake are analyzed. Finally, combined with the characteristics of blockchain technology and existing application framework, this paper summarizes the existing problems in the industry and forecasts the development trend of intellectual property based on blockchain technology.
Xiao, Lijun, Huang, Weihong, Deng, Han, Xiao, Weidong.  2019.  A hardware intellectual property protection scheme based digital compression coding technology. 2019 IEEE International Conference on Smart Cloud (SmartCloud). :75—79.

This paper presents a scheme of intellectual property protection of hardware circuit based on digital compression coding technology. The aim is to solve the problem of high embedding cost and low resource utilization of IP watermarking. In this scheme, the watermark information is preprocessed by dynamic compression coding around the idle circuit of FPGA, and the free resources of the surrounding circuit are optimized that the IP watermark can get the best compression coding model while the extraction and detection of IP core watermark by activating the decoding function. The experimental results show that this method not only expands the capacity of watermark information, but also reduces the cost of watermark and improves the security and robustness of watermark algorithm.

Jiang, Tao, Hu, Shuijing.  2019.  Intellectual Property Protection for AI-Related Inventions in Japan. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :286—289.
To increase the possibility of patent entitled of artificial intelligence related inventions at the Japanese patent office, this paper analyzes the Japanese patent act and patent examination guidelines. The approach for assessing whether a computer related invention belongs to a eligible subject-matter includes two steps. The first step is whether a computer related invention meets the definition of an "invention" that is "creation of a technical idea utilizing the laws of nature" . The second step is whether a computer related invention meets "idea based on the standpoint of software" . From the perspective of patent analysis, Japan's artificial intelligence technology is leading the world, second only to the United States. In this field, the Japanese patent office is one of the most important intellectual property offices, and its legislation and practice of patent eligibility review for artificial intelligence related inventions have an important impact on the world.
Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Can Multi-Layer Microfluidic Design Methods Aid Bio-Intellectual Property Protection? 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :151—154.
Researchers develop bioassays by rigorously experimenting in the lab. This involves significant fiscal and skilled person-hour investment. A competitor can reverse engineer a bioassay implementation by imaging or taking a video of a biochip when in use. Thus, there is a need to protect the intellectual property (IP) rights of the bioassay developer. We introduce a novel 3D multilayer-based obfuscation to protect a biochip against reverse engineering.
2018-06-11
Chen, X., Qu, G., Cui, A., Dunbar, C..  2017.  Scan chain based IP fingerprint and identification. 2017 18th International Symposium on Quality Electronic Design (ISQED). :264–270.

Digital fingerprinting refers to as method that can assign each copy of an intellectual property (IP) a distinct fingerprint. It was introduced for the purpose of protecting legal and honest IP users. The unique fingerprint can be used to identify the IP or a chip that contains the IP. However, existing fingerprinting techniques are not practical due to expensive cost of creating fingerprints and the lack of effective methods to verify the fingerprints. In the paper, we study a practical scan chain based fingerprinting method, where the digital fingerprint is generated by selecting the Q-SD or Q'-SD connection during the design of scan chains. This method has two major advantages. First, fingerprints are created as a post-silicon procedure and therefore there will be little fabrication overhead. Second, altering the Q-SD or Q'-SD connection style requires the modification of test vectors for each fingerprinted IP in order to maintain the fault coverage. This enables us to verify the fingerprint by inspecting the test vectors without opening up the chip to check the Q-SD or Q'-SD connection styles. We perform experiment on standard benchmarks to demonstrate that our approach has low design overhead. We also conduct security analysis to show that such fingerprints are robust against various attacks.

2018-01-23
Zhang, Dongrong, He, Miao, Wang, Xiaoxiao, Tehranipoor, M..  2017.  Dynamically obfuscated scan for protecting IPs against scan-based attacks throughout supply chain. 2017 IEEE 35th VLSI Test Symposium (VTS). :1–6.

Scan-based test is commonly used to increase testability and fault coverage, however, it is also known to be a liability for chip security. Research has shown that intellectual property (IP) or secret keys can be leaked through scan-based attacks. In this paper, we propose a dynamically-obfuscated scan design for protecting IPs against scan-based attacks. By perturbing all test patterns/responses and protecting the obfuscation key, the proposed architecture is proven to be robust against existing non-invasive scan attacks, and can protect all scan data from attackers in foundry, assembly, and system developers (i.e., OEMs) without compromising the testability. Furthermore, the proposed architecture can be easily plugged into EDA generated scan chains without having a noticeable impact on conventional integrated circuit (IC) design, manufacturing, and test flow. Finally, detailed security and experimental analyses have been performed on several benchmarks. The results demonstrate that the proposed method can protect chips from existing brute force, differential, and other scan-based attacks that target the obfuscation key. The proposed design is of low overhead on area, power consumption, and pattern generation time, and there is no impact on test time.

Lin, Q., Wong, S..  2017.  A study of intellectual property protection for mass innovation spaces. 2017 International Conference on Applied System Innovation (ICASI). :973–975.

Intellectual property is inextricably linked to the innovative development of mass innovation spaces. The synthetic development of intellectual property and mass innovation spaces will fundamentally support the new economic model of “mass entrepreneurship and innovation”. As such, it is critical to explore intellectual property service standards for mass innovation spaces and to steer mass innovation spaces to the creation of an intellectual property service system catering to “makers”. In addition, it is crucial to explore intellectual cluster management innovations for mass innovation spaces.

Abtioglu, E., Yeniçeri, R., Gövem, B., Göncü, E., Yalçin, M. E., Saldamli, G..  2017.  Partially Reconfigurable IP Protection System with Ring Oscillator Based Physically Unclonable Functions. 2017 New Generation of CAS (NGCAS). :65–68.

The size of counterfeiting activities is increasing day by day. These activities are encountered especially in electronics market. In this paper, a countermeasure against counterfeiting on intellectual properties (IP) on Field-Programmable Gate Arrays (FPGA) is proposed. FPGA vendors provide bitstream ciphering as an IP security solution such as battery-backed or non-volatile FPGAs. However, these solutions are secure as long as they can keep decryption key away from third parties. Key storage and key transfer over unsecure channels expose risks for these solutions. In this work, physical unclonable functions (PUFs) have been used for key generation. Generating a key from a circuit in the device solves key transfer problem. Proposed system goes through different phases when it operates. Therefore, partial reconfiguration feature of FPGAs is essential for feasibility of proposed system.

Adetomi, A., Enemali, G., Arslan, T..  2017.  Towards an efficient intellectual property protection in dynamically reconfigurable FPGAs. 2017 Seventh International Conference on Emerging Security Technologies (EST). :150–156.

The trend in computing is towards the use of FPGAs to improve performance at reduced costs. An indication of this is the adoption of FPGAs for data centre and server application acceleration by notable technological giants like Microsoft, Amazon, and Baidu. The continued protection of Intellectual Properties (IPs) on the FPGA has thus become both more important and challenging. To facilitate IP security, FPGA vendors have provided bitstream authentication and encryption. However, advancements in FPGA programming technology have engendered a bitstream manipulation technique like partial bitstream relocation (PBR), which is promising in terms of reducing bitstream storage cost and facilitating adaptability. Meanwhile, encrypted bitstreams are not amenable to PBR. In this paper, we present three methods for performing encrypted PBR with varying overheads of resources and time. These methods ensure that PBR can be applied to bitstreams without losing the protection of IPs.

Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.

Groß, Tobias, Müller, Tilo.  2017.  Protecting JavaScript Apps from Code Analysis. Proceedings of the 4th Workshop on Security in Highly Connected IT Systems. :1–6.
Apps written in JavaScript are an easy target for reverse engineering attacks, e.g. to steal the intellectual property or to create a clone of an app. Unprotected JavaScript apps even contain high level information such as developer comments, if those were not explicitly stripped. This fact becomes more and more important with the increasing popularity of JavaScript as language of choice for both web development and hybrid mobile apps. In this paper, we present a novel JavaScript obfuscator based on the Google Closure Compiler, which transforms readable JavaScript source code into a representation much harder to analyze for adversaries. We evaluate this obfuscator regarding its performance impact and its semantics-preserving property.