Biblio
Supervisory Control and Data Acquisition (SCADA) systems have been a frequent target of cyberattacks in Industrial Control Systems (ICS). As such systems are a frequent target of highly motivated attackers, researchers often resort to intrusion detection through machine learning techniques to detect new kinds of threats. However, current research initiatives, in general, pursue higher detection accuracies, neglecting the detection of new kind of threats and their proposal detection scope. This paper proposes a novel, reliable host-based intrusion detection for SCADA systems through the Operating System (OS) diversity. Our proposal evaluates, at the OS level, the SCADA communication over time and, opportunistically, detects, and chooses the most appropriate OS to be used in intrusion detection for reliability purposes. Experiments, performed through a variety of SCADA OSs front-end, shows that OS diversity provides higher intrusion detection scope, improving detection accuracy by up to 8 new attack categories. Besides, our proposal can opportunistically detect the most reliable OS that should be used for the current environment behavior, improving by up to 8%, on average, the system accuracy when compared to a single OS approach, in the best case.
Cybersecurity of the supervisory control and data acquisition (SCADA) system, which is the key component of the cyber-physical systems (CPS), is facing big challenges and will affect the reliability of the smart grid. System reliability can be influenced by various cyber threats. In this paper, the reliability of the electric power system considering different cybersecurity issues in the SCADA system is analyzed by using Semi-Markov Process (SMP) and mean time-to-compromise (MTTC). External and insider attacks against the SCADA system are investigated with the SMP models and the results are compared. The system reliability is evaluated by reliability indexes including loss of load probability (LOLP) and expected energy not supplied (EENS) through Monte Carlo Simulations (MCS). The lurking threats of the cyberattacks are also analyzed in the study. Case studies were conducted on the IEEE Reliability Test System (RTS-96). The results show that with the increase of the MTTCs of the cyberattacks, the LOLP values decrease. When insider attacks are considered, both the LOLP and EENS values dramatically increase owing to the decreased MTTCs. The results provide insights into the establishment of the electric power system reliability enhancement strategies.
Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.
Wide integration of information and communication technology (ICT) in modern power grids has brought many benefits as well as the risk of cyber attacks. A critical step towards defending grid cyber security is to understand the cyber-physical causal chain, which describes the progression of intrusion in cyber-space leading to the formation of consequences on the physical power grid. In this paper, we develop an attack vector for a time delay attack at load frequency control in the power grid. Distinct from existing works, which are separately focused on cyber intrusion, grid response, or testbed validation, the proposed attack vector for the first time provides a full cyber-physical causal chain. It targets specific vulnerabilities in the protocols, performs a denial-of-service (DoS) attack, induces the delays in control loop, and destabilizes grid frequency. The proposed attack vector is proved in theory, presented as an attack tree, and validated in an experimental environment. The results will provide valuable insights to develop security measures and robust controls against time delay attacks.
A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.
Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.
The Automation industries that uses Supervisory Control and Data Acquisition (SCADA) systems are highly vulnerable for Network threats. Systems that are air-gapped and isolated from the internet are highly affected due to insider attacks like Spoofing, DOS and Malware threats that affects confidentiality, integrity and availability of Operational Technology (OT) system elements and degrade its performance even though security measures are taken. In this paper, a behavior-based intrusion prevention system (IPS) is designed for OT networks. The proposed system is implemented on SCADA test bed with two systems replicates automation scenarios in industry. This paper describes 4 main classes of cyber-attacks with their subclasses against SCADA systems and methodology with design of components of IPS system, database creation, Baselines and deployment of system in environment. IPS system identifies not only IT protocols but also Industry Control System (ICS) protocols Modbus and DNP3 with their inside communication fields using deep packet inspection (DPI). The analytical results show 99.89% accuracy on binary classification and 97.95% accuracy on multiclass classification of different attack vectors performed on network with low false positive rate. These results are also validated by actual deployment of IPS in SCADA systems with the prevention of DOS attack.
Cyber-physical systems contribute to building new infrastructure in the modern world. These systems help realize missions reducing costs and risks. The seas being a harsh and dangerous environment are a perfect application of them. Unmanned Surface vehicles (USV) allow realizing normal and new tasks reducing risk and cost i.e. surveillance, water cleaning, environmental monitoring or search and rescue operations. Also, as they are unmanned vehicles they can extend missions to unpleasing and risky weather conditions. The novelty of these systems makes that new command and control platforms need to be developed. In this paper, we describe an implemented architecture with 5 separated levels. This structure increases security by defining roles and by limiting information exchanges.
Industrial Control systems traditionally achieved security by using proprietary protocols to communicate in an isolated environment from the outside. This paradigm is changed with the advent of the Industrial Internet of Things that foresees flexible and interconnected systems. In this contribution, a device acting as a connection between the operational technology network and information technology network is proposed. The device is an intrusion detection system related to legacy systems that is able to collect and reporting data to and from industrial IoT devices. It is based on the common signature based intrusion detection system developed in the information technology domain, however, to cope with the constraints of the operation technology domain, it exploits anomaly based features. Specifically, it is able to analyze the traffic on the network at application layer by mean of deep packet inspection, parsing the information carried by the proprietary protocols. At a later stage, it collect and aggregate data from and to IoT domain. A simple set up is considered to prove the effectiveness of the approach.