Visible to the public Biblio

Found 118 results

Filters: Keyword is SCADA systems  [Clear All Filters]
2019-07-01
Akhtar, T., Gupta, B. B., Yamaguchi, S..  2018.  Malware propagation effects on SCADA system and smart power grid. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–6.

Critical infrastructures have suffered from different kind of cyber attacks over the years. Many of these attacks are performed using malwares by exploiting the vulnerabilities of these resources. Smart power grid is one of the major victim which suffered from these attacks and its SCADA system are frequently targeted. In this paper we describe our proposed framework to analyze smart power grid, while its SCADA system is under attack by malware. Malware propagation and its effects on SCADA system is the focal point of our analysis. OMNeT++ simulator and openDSS is used for developing and analyzing the simulated smart power grid environment.

Urias, V. E., Stout, M. S. William, Leeuwen, B. V..  2018.  On the Feasibility of Generating Deception Environments for Industrial Control Systems. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

The cyber threat landscape is a constantly morphing surface; the need for cyber defenders to develop and create proactive threat intelligence is on the rise, especially on critical infrastructure environments. It is commonly voiced that Supervisory Control and Data Acquisition (SCADA) systems and Industrial Control Systems (ICS) are vulnerable to the same classes of threats as other networked computer systems. However, cyber defense in operational ICS is difficult, often introducing unacceptable risks of disruption to critical physical processes. This is exacerbated by the notion that hardware used in ICS is often expensive, making full-scale mock-up systems for testing and/or cyber defense impractical. New paradigms in cyber security have focused heavily on using deception to not only protect assets, but also gather insight into adversary motives and tools. Much of the work that we see in today's literature is focused on creating deception environments for traditional IT enterprise networks; however, leveraging our prior work in the domain, we explore the opportunities, challenges and feasibility of doing deception in ICS networks.

Perez, R. Lopez, Adamsky, F., Soua, R., Engel, T..  2018.  Machine Learning for Reliable Network Attack Detection in SCADA Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :633–638.

Critical Infrastructures (CIs) use Supervisory Control And Data Acquisition (SCADA) systems for remote control and monitoring. Sophisticated security measures are needed to address malicious intrusions, which are steadily increasing in number and variety due to the massive spread of connectivity and standardisation of open SCADA protocols. Traditional Intrusion Detection Systems (IDSs) cannot detect attacks that are not already present in their databases. Therefore, in this paper, we assess Machine Learning (ML) for intrusion detection in SCADA systems using a real data set collected from a gas pipeline system and provided by the Mississippi State University (MSU). The contribution of this paper is two-fold: 1) The evaluation of four techniques for missing data estimation and two techniques for data normalization, 2) The performances of Support Vector Machine (SVM), and Random Forest (RF) are assessed in terms of accuracy, precision, recall and F1score for intrusion detection. Two cases are differentiated: binary and categorical classifications. Our experiments reveal that RF detect intrusions effectively, with an F1score of respectively \textbackslashtextgreater 99%.

Zabetian-Hosseini, A., Mehrizi-Sani, A., Liu, C..  2018.  Cyberattack to Cyber-Physical Model of Wind Farm SCADA. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :4929–4934.

In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.

Kolosok, I., Korkina, E., Mahnitko, A., Gavrilovs, A..  2018.  Supporting Cyber-Physical Security of Electric Power System by the State Estimation Technique. 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). :1–6.

Security is one of the most important properties of electric power system (EPS). We consider the state estimation (SE) tool as a barrier to the corruption of data on current operating conditions of the EPS. An algorithm for a two-level SE on the basis of SCADA and WAMS measurements is effective in terms of detection of malicious attacks on energy system. The article suggests a methodology to identify cyberattacks on SCADA and WAMS.

Kumar, S., Gaur, N., Kumar, A..  2018.  Developing a Secure Cyber Ecosystem for SCADA Architecture. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :559–562.

Advent of Cyber has converted the entire World into a Global village. But, due to vurneabilites in SCADA architecture [1] national assests are more prone to cyber attacks.. Cyber invasions have a catastrophic effect in the minds of the civilian population, in terms of states security system. A robust cyber security is need of the hour to protect the critical information infastructrue & critical infrastructure of a country. Here, in this paper we scrutinize cyber terrorism, vurneabilites in SCADA network systems [1], [2] and concept of cyber resilience to combat cyber attacks.

2019-05-01
Ren, W., Yardley, T., Nahrstedt, K..  2018.  EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks. 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1-7.

Supervisory Control and Data Acquisition (SCADA) systems play a critical role in the operation of large-scale distributed industrial systems. There are many vulnerabilities in SCADA systems and inadvertent events or malicious attacks from outside as well as inside could lead to catastrophic consequences. Network-based intrusion detection is a preferred approach to provide security analysis for SCADA systems due to its less intrusive nature. Data in SCADA network traffic can be generally divided into transport, operation, and content levels. Most existing solutions only focus on monitoring and event detection of one or two levels of data, which is not enough to detect and reason about attacks in all three levels. In this paper, we develop a novel edge-based multi-level anomaly detection framework for SCADA networks named EDMAND. EDMAND monitors all three levels of network traffic data and applies appropriate anomaly detection methods based on the distinct characteristics of data. Alerts are generated, aggregated, prioritized before sent back to control centers. A prototype of the framework is built to evaluate the detection ability and time overhead of it.

2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

2019-02-13
Irmak, E., Erkek, İ.  2018.  An overview of cyber-attack vectors on SCADA systems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–5.

Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.

2018-07-18
Feng, C., Li, T., Chana, D..  2017.  Multi-level Anomaly Detection in Industrial Control Systems via Package Signatures and LSTM Networks. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :261–272.

We outline an anomaly detection method for industrial control systems (ICS) that combines the analysis of network package contents that are transacted between ICS nodes and their time-series structure. Specifically, we take advantage of the predictable and regular nature of communication patterns that exist between so-called field devices in ICS networks. By observing a system for a period of time without the presence of anomalies we develop a base-line signature database for general packages. A Bloom filter is used to store the signature database which is then used for package content level anomaly detection. Furthermore, we approach time-series anomaly detection by proposing a stacked Long Short Term Memory (LSTM) network-based softmax classifier which learns to predict the most likely package signatures that are likely to occur given previously seen package traffic. Finally, by the inspection of a real dataset created from a gas pipeline SCADA system, we show that an anomaly detection scheme combining both approaches can achieve higher performance compared to various current state-of-the-art techniques.

2018-05-24
Zhang, T., Wang, Y., Liang, X., Zhuang, Z., Xu, W..  2017.  Cyber Attacks in Cyber-Physical Power Systems: A Case Study with GPRS-Based SCADA Systems. 2017 29th Chinese Control And Decision Conference (CCDC). :6847–6852.

With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.

2018-05-09
Tsujii, Y., Kawakita, K. E., Kumagai, M., Kikuchi, A., Watanabe, M..  2017.  State Estimation Error Detection System for Online Dynamic Security Assessment. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Online Dynamic Security Assessment (DSA) is a dynamical system widely used for assessing and analyzing an electrical power system. The outcomes of DSA are used in many aspects of the operation of power system, from monitoring the system to determining remedial action schemes (e.g. the amount of generators to be shed at the event of a fault). Measurement from supervisory control and data acquisition (SCADA) and state estimation (SE) results are the inputs for online-DSA, however, the SE error, caused by sudden change in power flow or low convergence rate, could be unnoticed and skew the outcome. Therefore, generator shedding scheme cannot achieve optimum but must have some margin because we don't know how SE error caused by these problems will impact power system stability control. As a method for solving the problem, we developed SE error detection system (EDS), which is enabled by detecting the SE error that will impact power system transient stability. The method is comparing a threshold value and an index calculated by the difference between SE results and PMU observation data, using the distance from the fault point and the power flow value. Using the index, the reliability of the SE results can be verified. As a result, online-DSA can use the SE results while avoiding the bad SE results, assuring the outcome of the DSA assessment and analysis, such as the amount of generator shedding in order to prevent the power system's instability.

Vargas, C., Langfinger, M., Vogel-Heuser, B..  2017.  A Tiered Security Analysis of Industrial Control System Devices. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). :399–404.

The discussion of threats and vulnerabilities in Industrial Control Systems has gained popularity during the last decade due to the increase in interest and growing concern to secure these systems. In order to provide an overview of the complete landscape of these threats and vulnerabilities this contribution provides a tiered security analysis of the assets that constitute Industrial Control Systems. The identification of assets is obtained from a generalization of the system's architecture. Additionally, the security analysis is complemented by discussing security countermeasures and solutions that can be used to counteract the vulnerabilities and increase the security of control systems.

Hill, Zachary, Chen, Samuel, Wall, Donald, Papa, Mauricio, Hale, John, Hawrylak, Peter.  2017.  Simulation and Analysis Framework for Cyber-Physical Systems. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :7:1–7:4.

This paper describes a unified framework for the simulation and analysis of cyber physical systems (CPSs). The framework relies on the FreeBSD-based IMUNES network simulator. Components of the CPS are modeled as nodes within the IMUNES network simulator; nodes that communicate using real TCP/IP traffic. Furthermore, the simulated system can be exposed to other networks and the Internet to make it look like a real SCADA system. The frame-work has been used to simulate a TRIGA nuclear reactor. This is accomplished by creating nodes within the IMUNES network capable of running system modules simulating different CPS components. Nodes communicate using MODBUS/TCP, a widely used process control protocol. A goal of this work is to eventually integrate the simulator with a honeynet. This allows researchers to not only simulate a digital control system using real TCP/IP traffic to test control strategies and network topologies, but also to explore possible cyber attacks and mitigation strategies.

Markman, Chen, Wool, Avishai, Cardenas, Alvaro A..  2017.  A New Burst-DFA Model for SCADA Anomaly Detection. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :1–12.

In Industrial Control Systems (ICS/SCADA), machine to machine data traffic is highly periodic. Past work showed that in many cases, it is possible to model the traffic between each individual Programmable Logic Controller (PLC) and the SCADA server by a cyclic Deterministic Finite Automaton (DFA), and to use the model to detect anomalies in the traffic. However, a recent analysis of network traffic in a water facility in the U.S, showed that cyclic-DFA models have limitations. In our research, we examine the same data corpus; our study shows that the communication on all of the channels in the network is done in bursts of packets, and that the bursts have semantic meaning---the order within a burst depends on the messages. Using these observations, we suggest a new burst-DFA model that fits the data much better than previous work. Our model treats the traffic on each channel as a series of bursts, and matches each burst to the DFA, taking the burst's beginning and end into account. Our burst-DFA model successfully explains between 95% and 99% of the packets in the data-corpus, and goes a long way toward the construction of a practical anomaly detection system.

Formby, David, Walid, Anwar, Beyah, Raheem.  2017.  A Case Study in Power Substation Network Dynamics. Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems. :66–66.

The modern world is becoming increasingly dependent on computing and communication technology to function, but unfortunately its application and impact on areas such as critical infrastructure and industrial control system (ICS) networks remains to be thoroughly studied. Significant research has been conducted to address the myriad security concerns in these areas, but they are virtually all based on artificial testbeds or simulations designed on assumptions about their behavior either from knowledge of traditional IT networking or from basic principles of ICS operation. In this work, we provide the most detailed characterization of an example ICS to date in order to determine if these common assumptions hold true. A live power distribution substation is observed over the course of two and a half years to measure its behavior and evolution over time. Then, a horizontal study is conducted that compared this behavior with three other substations from the same company. Although most predictions were found to be correct, some unexpected behavior was observed that highlights the fundamental differences between ICS and IT networks including round trip times dominated by processing speed as opposed to network delay, several well known TCP features being largely irrelevant, and surprisingly large jitter from devices running real-time operating systems. The impact of these observations is discussed in terms of generality to other embedded networks, network security applications, and the suitability of the TCP protocol for this environment.

Alves, Thiago, Morris, Thomas, Yoo, Seong-Moo.  2017.  Securing SCADA Applications Using OpenPLC With End-To-End Encryption. Proceedings of the 3rd Annual Industrial Control System Security Workshop. :1–6.

During its nascent stages, Programmable Logic Controllers (PLC) were made robust to sustain tough industrial environments, but little care was taken to raise defenses against potential cyberthreats. The recent interconnectivity of legacy PLCs and SCADA systems with corporate networks and the internet has significantly increased the threats to critical infrastructure. To counter these threats, researchers have put their efforts in finding defense mechanisms that can protect the SCADA network and the PLCs. Encryption is a critical component of security and therefore has been used by many organizations to protect data on the network. However, since PLC vendors don't make available information about their hardware or software, it becomes challenging to embed encryption into their devices, especially if they rely on legacy protocols. This paper describes an alternative design using an open source PLC that was modified to encrypt all data it sends over the network, independently of the protocol used. Experimental results indicated that the encryption layer increased the security of the link without causing a significant overhead.

Korman, Matus, Välja, Margus, Björkman, Gunnar, Ekstedt, Mathias, Vernotte, Alexandre, Lagerström, Robert.  2017.  Analyzing the Effectiveness of Attack Countermeasures in a SCADA System. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :73–78.

The SCADA infrastructure is a key component for power grid operations. Securing the SCADA infrastructure against cyber intrusions is thus vital for a well-functioning power grid. However, the task remains a particular challenge, not the least since not all available security mechanisms are easily deployable in these reliability-critical and complex, multi-vendor environments that host modern systems alongside legacy ones, to support a range of sensitive power grid operations. This paper examines how effective a few countermeasures are likely to be in SCADA environments, including those that are commonly considered out of bounds. The results show that granular network segmentation is a particularly effective countermeasure, followed by frequent patching of systems (which is unfortunately still difficult to date). The results also show that the enforcement of a password policy and restrictive network configuration including whitelisting of devices contributes to increased security, though best in combination with granular network segmentation.

Green, Benjamin, Krotofil, Marina, Abbasi, Ali.  2017.  On the Significance of Process Comprehension for Conducting Targeted ICS Attacks. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :57–67.

The exploitation of Industrial Control Systems (ICSs) has been described as both easy and impossible, where is the truth? PostStuxnet works have included a plethora of ICS focused cyber security research activities, with topics covering device maturity, network protocols, and overall cyber security culture. We often hear the notion of ICSs being highly vulnerable due to a lack of inbuilt security mechanisms, considered a low hanging fruit to a variety of low skilled threat actors. While there is substantial evidence to support such a notion, when considering targeted attacks on ICS, it is hard to believe an attacker with limited resources, such as a script kiddie or hacktivist, using publicly accessible tools and exploits alone, would have adequate knowledge and resources to achieve targeted operational process manipulation, while simultaneously evade detection. Through use of a testbed environment, this paper provides two practical examples based on a Man-In-The-Middle scenario, demonstrating the types of information an attacker would need obtain, collate, and comprehend, in order to begin targeted process manipulation and detection avoidance. This allows for a clearer view of associated challenges, and illustrate why targeted ICS exploitation might not be possible for every malicious actor.

2018-04-04
Ullah, I., Mahmoud, Q. H..  2017.  A hybrid model for anomaly-based intrusion detection in SCADA networks. 2017 IEEE International Conference on Big Data (Big Data). :2160–2167.

Supervisory Control and Data Acquisition (SCADA) systems complexity and interconnectivity increase in recent years have exposed the SCADA networks to numerous potential vulnerabilities. Several studies have shown that anomaly-based Intrusion Detection Systems (IDS) achieves improved performance to identify unknown or zero-day attacks. In this paper, we propose a hybrid model for anomaly-based intrusion detection in SCADA networks using machine learning approach. In the first part, we present a robust hybrid model for anomaly-based intrusion detection in SCADA networks. Finally, we present a feature selection model for anomaly-based intrusion detection in SCADA networks by removing redundant and irrelevant features. Irrelevant features in the dataset can affect modeling power and reduce predictive accuracy. These models were evaluated using an industrial control system dataset developed at the Distributed Analytics and Security Institute Mississippi State University Starkville, MS, USA. The experimental results show that our proposed model has a key effect in reducing the time and computational complexity and achieved improved accuracy and detection rate. The accuracy of our proposed model was measured as 99.5 % for specific-attack-labeled.

2018-02-21
Lai, J., Duan, B., Su, Y., Li, L., Yin, Q..  2017.  An active security defense strategy for wind farm based on automated decision. 2017 IEEE Power Energy Society General Meeting. :1–5.

With the development of smart grid, information and energy integrate deeply. For remote monitoring and cluster management, SCADA system of wind farm should be connected to Internet. However, communication security and operation risk put forward a challenge to data network of the wind farm. To address this problem, an active security defense strategy combined whitelist and security situation assessment is proposed. Firstly, the whitelist is designed by analyzing the legitimate packet of Modbus on communication of SCADA servers and PLCs. Then Knowledge Automation is applied to establish the Decision Requirements Diagram (DRD) for wind farm security. The D-S evidence theory is adopted to assess operation situation of wind farm and it together with whitelist offer the security decision for wind turbine. This strategy helps to eliminate the wind farm owners' security concerns of data networking, and improves the integrity of the cyber security defense for wind farm.

2018-02-14
Huang, K., Zhou, C., Tian, Y. C., Tu, W., Peng, Y..  2017.  Application of Bayesian network to data-driven cyber-security risk assessment in SCADA networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.

2018-01-16
Pappa, A. C., Ashok, A., Govindarasu, M..  2017.  Moving target defense for securing smart grid communications: Architecture, implementation evaluation. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Supervisory Control and Data Acquisition(SCADA) communications are often subjected to various sophisticated cyber-attacks mostly because of their static system characteristics, enabling an attacker for easier profiling of the target system(s) and thereby impacting the Critical Infrastructures(CI). In this Paper, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, leveraging the existing communication network with an end-to-end IP-Hopping technique among trusted peers. The main contribution involves the design and implementation of MTD Architecture on Iowa State's PowerCyber testbed for targeted cyber-attacks, without compromising the availability of a SCADA system and studying the delay and throughput characteristics for different hopping rates in a realistic environment. Finally, we study two cases and provide mitigations for potential weaknesses of the proposed mechanism. Also, we propose to incorporate port mutation to further increase attack complexity as part of future work.

Ulrich, J., Drahos, J., Govindarasu, M..  2017.  A symmetric address translation approach for a network layer moving target defense to secure power grid networks. 2017 Resilience Week (RWS). :163–169.

This paper will suggest a robust method for a network layer Moving Target Defense (MTD) using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an automated tool that may provide defense in depth when be used in conjunction with other MTDs and traditional security devices.

2017-12-20
Hao, K., Achanta, S. V., Fowler, J., Keckalo, D..  2017.  Apply a wireless line sensor system to enhance distribution protection schemes. 2017 70th Annual Conference for Protective Relay Engineers (CPRE). :1–11.

Traditionally, utility crews have used faulted circuit indicators (FCIs) to locate faulted line sections. FCIs monitor current and provide a local visual indication of recent fault activity. When a fault occurs, the FCIs operate, triggering a visual indication that is either a mechanical target (flag) or LED. There are also enhanced FCIs with communications capability, providing fault status to the outage management system (OMS) or supervisory control and data acquisition (SCADA) system. Such quickly communicated information results in faster service restoration and reduced outage times. For distribution system protection, protection devices (such as recloser controls) must coordinate with downstream devices (such as fuses or other recloser controls) to clear faults. Furthermore, if there are laterals on a feeder that are protected by a recloser control, it is desirable to communicate to the recloser control which lateral had the fault in order to enhance tripping schemes. Because line sensors are typically placed along distribution feeders, they are capable of sensing fault status and characteristics closer to the fault. If such information can be communicated quickly to upstream protection devices, at protection speeds, the protection devices can use this information to securely speed up distribution protection scheme operation. With recent advances in low-power electronics, wireless communications, and small-footprint sensor transducers, wireless line sensors can now provide fault information to the protection devices with low latencies that support protection speeds. This paper describes the components of a wireless protection sensor (WPS) system, its integration with protection devices, and how the fault information can be transmitted to such devices. Additionally, this paper discusses how the protection devices use this received fault information to securely speed up the operation speed of and improve the selectivity of distribution protection schemes, in add- tion to locating faulted line sections.