Biblio
In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.
Learning-enabled components (LECs) are widely used in cyber-physical systems (CPS) since they can handle the uncertainty and variability of the environment and increase the level of autonomy. However, it has been shown that LECs such as deep neural networks (DNN) are not robust and adversarial examples can cause the model to make a false prediction. The paper considers the problem of efficiently detecting adversarial examples in LECs used for regression in CPS. The proposed approach is based on inductive conformal prediction and uses a regression model based on variational autoencoder. The architecture allows to take into consideration both the input and the neural network prediction for detecting adversarial, and more generally, out-of-distribution examples. We demonstrate the method using an advanced emergency braking system implemented in an open source simulator for self-driving cars where a DNN is used to estimate the distance to an obstacle. The simulation results show that the method can effectively detect adversarial examples with a short detection delay.
This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when the utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy storage system to increase energy security for facilities with critical loads. The design tool's novelty includes compliance with IEEE standards 1562 and 1013 and addresses resilience, which is not taken into account in existing design methods. Several case studies, simulated with a physics-based model, validate the proposed design method. Additionally, the design and the simulations were validated by 24-hour laboratory experiments conducted on a microgrid assembled using commercial off the shelf components.
Energy Internet is a typical cyber-physical system (CPS), in which the disturbance on cyber part may result in the operation risks on the physical part. In order to perform CPS assessment and research the interactive influence between cyber part and physical part, an integrated energy internet CPS model which adopts information flow matrix, energy control flow matrix and information energy hybrid flow matrix is proposed in this paper. The proposed model has a higher computational efficacy compared with simulation based approaches. Then, based on the proposed model, the influence of cyber disturbances such as data dislocation, data delay and data error on the physical part are studied. Finally, a 3 MW PET based energy internet CPS is built using PSCAD/EMTDC software. The simulation results prove the validity of the proposed model and the correctness of the interactive influence analysis.
The increased power capacity and networking requirements in Extremely Fast Charging (XFC) systems for battery electric vehicles (BEVs) and the resulting increase in the adversarial attack surface call for security measures to be taken in the involved cyber-physical system (CPS). Within this system, the security of the BEV's battery management system (BMS) is of critical importance as the BMS is the first line of defense between the vehicle and the charge station. This study proposes an optimal control and moving-target defense (MTD) based novel approach for the security of the vehicle BMS) focusing on the charging process, during which a compromised vehicle may contaminate the XFC station and the whole grid. This paper is part of our ongoing research, which is one of the few, if not the first, reported studies in the literature on security-hardened BMS, aiming to increase the security and performance of operations between the charging station, the BMS and the battery system of electric vehicles. The developed MTD based switching strategy makes use of redundancies in the controller and feedback design. The performed simulations demonstrate an increased unpredictability and acceptable charging performance under adversarial attacks.
Though the deep penetration of cyber systems across the smart grid sub-domains enrich the operation of the wide-area protection, control, and smart grid applications, the stochastic nature of cyber-attacks by adversaries inflict their performance and the system operation. Various hardware-in-the-loop (HIL) cyber-physical system (CPS) testbeds have attempted to evaluate the cyberattack dynamics and power system perturbations for robust wide-area protection algorithms. However, physical resource constraints and modular integration designs have been significant barriers while modeling large-scale grid models (scalability) and have limited many of the CPS testbeds to either small-scale HIL environment or complete simulation environments. This paper proposes a meticulous design and efficient modeling of IEC-61850 logical nodes in physical relays to simulate large-scale grid models in a HIL real-time digital simulator environment integrated with industry-grade hardware and software systems for wide-area power system applications. The proposed meticulous design includes multi-breaker emulation in the physical relays, which extends the capacity of a physical relay to accommodate more number of CPS interfaces in the HIL CPS security testbed environment. We have used our existing HIL CPS security testbed to demonstrate scalability by the real-time performance of ten simultaneous IEEE-39 CPS grid models. The experiments demonstrated significant results by 100% real-time performance with zero overruns, and low latency while receiving and executing control signals from physical SEL relays via IEC-61850 and DNP-3 protocols to real-time digital simulator, substation remote terminal unit (RTU) software and supervisory control and data acquisition (SCADA) software at control center.
Securing Cyber-Physical Systems (CPS) against cyber-attacks is challenging due to the wide range of possible attacks - from stealthy ones that seek to manipulate/drop/delay control and measurement signals to malware that infects host machines that control the physical process. This has prompted the research community to address this problem through developing targeted methods that protect and check the run-time operation of the CPS. Since protecting signals and checking for errors result in performance penalties, they must be performed within the delay bounds dictated by the control loop. Due to the large number of potential checks that can be performed, coupled with various degrees of their effectiveness to detect a wide range of attacks, strategic assignment of these checks in the control loop is a critical endeavor. To that end, this paper presents a coherent runtime framework - which we coin BLOC - for orchestrating the CPS with check blocks to secure them against cyber attacks. BLOC capitalizes on game theoretical techniques to enable the defender to find an optimal randomized use of check blocks to secure the CPS while respecting the control-loop constraints. We develop a Stackelberg game model for stateless blocks and a Markov game model for stateful ones and derive optimal policies that minimize the worst-case damage from rational adversaries. We validate our models through extensive simulations as well as a real implementation for a HVAC system.