Biblio
Filters: Keyword is Servers [Clear All Filters]
Integrated Proactive Defense for Software Defined Internet of Things under Multi-Target Attacks. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :767—774.
.
2020. Due to the constrained resource and computational limitation of many Internet of Things (IoT) devices, conventional security protections, which require high computational overhead are not suitable to be deployed. Thus, vulnerable IoT devices could be easily exploited by attackers to break into networks. In this paper, we employ cyber deception and moving target defense (MTD) techniques to proactively change the network topology with both real and decoy nodes with the support of software-defined networking (SDN) technology and investigate the impact of single-target and multi-target attacks on the effectiveness of the integrated mechanism via a hierarchical graphical security model with security metrics. We also implement a web-based visualization interface to show topology changes with highlighted attack paths. Finally, the qualitative security analysis is performed for a small-scale and SDN-supported IoT network with different combinations of decoy types and levels of attack intelligence. Simulation results show the integrated defense mechanism can introduce longer mean-time-to-security-failure and larger attack impact under the multi-target attack, compared with the single-target attack model. In addition, adaptive shuffling has better performance than fixed interval shuffling in terms of a higher proportion of decoy paths, longer mean-time-to-security-failure and largely reduced defense cost.
Multi-vNIC Intelligent Mutation: A Moving Target Defense to thwart Client-side DNS Cache Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
.
2020. As massive research efforts are poured into server-side DNS security enhancement in online cloud service platforms, sophisticated APTs tend to develop client-side DNS attacks, where defenders only have limited resources and abilities. The collaborative DNS attack is a representative newest client-side paradigm to stealthily undermine user cache by falsifying DNS responses. Different from existing static methods, in this paper, we propose a moving target defense solution named multi-vNIC intelligent mutation to free defenders from arduous work and thwart elusive client-side DNS attack in the meantime. Multiple virtual network interface cards are created and switched in a mutating manner. Thus attackers have to blindly guess the actual NIC with a high risk of exposure. Firstly, we construct a dynamic game-theoretic model to capture the main characteristics of both attacker and defender. Secondly, a reinforcement learning mechanism is developed to generate adaptive optimal defense strategy. Experiment results also highlight the security performance of our defense method compared to several state-of-the-art technologies.
Developing a Secured and Reliable Vehicular Communication System and Its Performance Evaluation. 2020 IEEE Region 10 Symposium (TENSYMP). :60–65.
.
2020. The Ad-hoc Vehicular networks (VANET) was developed through the implementation of the concepts of ad-hoc mobile networks(MANET), which is swiftly maturing, promising, emerging wireless communication technology nowadays. Vehicular communication enables us to communicate with other vehicles and Roadside Infrastructure Units (RSU) to share information pertaining to the safety system, traffic analysis, Authentication, privacy, etc. As VANETs operate in an open wireless connectivity system, it increases permeable of variant type's security issues. Security concerns, however, which are either generally seen in ad-hoc networks or utterly unique to VANET, present significant challenges. Access Control List (ACL) can be an efficient feature to solve such security issues by permitting statements to access registered specific IP addresses in the network and deny statement unregistered IP addresses in the system. To establish such secured VANETs, the License number of the vehicle will be the Identity Number, which will be assigned via a DNS server by the Traffic Certification Authority (TCA). TCA allows registered vehicles to access the nearest two or more regions. For special vehicles, public access should be restricted by configuring ACL on a specific IP. Smart-card given by TCA can be used to authenticate a subscriber by checking previous records during entry to a new network area. After in-depth analysis of Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR), Average Delay, and Handover Delay, this research offers more secure and reliable communication in VANETs.
A Moving Target Defense Technology Based on SCIT. 2020 International Conference on Computer Engineering and Application (ICCEA). :454—457.
.
2020. Moving target defense technology is one of the revolutionary techniques that is “changing the rules of the game” in the field of network technology, according to recent propositions from the US Science and Technology Commission. Building upon a recently-developed approach called Self Cleansing Intrusion Tolerance (SCIT), this paper proposes a moving target defense system that is based on server switching and cleaning. A protected object is maneuvered to improve its safety by exploiting software diversity and thereby introducing randomness and unpredictability into the system. Experimental results show that the improved system increases the difficulty of attack and significantly reduces the likelihood of a system being invaded, thus serving to enhance system security.
Coded Computing for Boolean Functions. 2020 International Symposium on Information Theory and Its Applications (ISITA). :141–145.
.
2020. The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner for improving overall performance. However, adversarial servers in a distributed computing system deliberately send erroneous data in order to affect the computation for their benefit. Computing Boolean functions is the key component of many applications of interest, e.g., classification problem, verification functions in the blockchain and the design of cryptographic algorithm. In this paper, we consider the problem of computing a Boolean function in which the computation is carried out distributively across several workers with particular focus on security against Byzantine workers. We note that any Boolean function can be modeled as a multivariate polynomial which can have high degree in general. Hence, the recently proposed Lagrange Coded Computing (LCC) can be used to simultaneously provide resiliency, security, and privacy. However, the security threshold (i.e., the maximum number of adversarial workers that can be tolerated) provided by LCC can be extremely low if the degree of the polynomial is high. Our goal is to design an efficient coding scheme which achieves the optimal security threshold. We propose two novel schemes called coded Algebraic normal form (ANF) and coded Disjunctive normal form (DNF). Instead of modeling the Boolean function as a general polynomial, the key idea of the proposed schemes is to model it as the concatenation of some linear functions and threshold functions. The proposed coded ANF and coded DNF outperform LCC by providing the security threshold which is independent of the polynomial's degree.
Semantic Location Privacy Protection Algorithm Based on Edge Cluster Graph. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1304–1309.
.
2020. With the development of positioning technology and the popularity of mobile devices, location-based services have been widely deployed. To use the services, users must provide the server accurate location information, during which the attacker tends to infer sensitive information from intercepting queries. In this paper, we model the road network as an edge cluster graph with its location semantics considered. Then, we propose the Circle First Structure Optimization (CFSO) algorithm which generates an anonymous set by adding optimal adjacent locations. Furthermore, we introduce controllable randomness and propose the Attack-Resilient (AR) algorithm to enhance the anti-attack ability. Meanwhile, to reduce the system overhead, our algorithms build the anonymous set quickly and take the structure of the anonymous set into account. Finally, we conduct experiments on a real map and the results demonstrate a higher anonymity success rate and a stronger anti-attack capability with less system overhead.
Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
.
2020. With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
Network Security System on Multiple Servers Against Brute Force Attacks. 2020 6th Information Technology International Seminar (ITIS). :258—262.
.
2020. Network security is critical to be able to maintain the information, especially on servers that store a lot of information; several types of attacks can occur on servers, including brute force and DDoS attacks; in the case study in this research, there are four servers used so that a network security system that can synchronize with each other so that when one server detects an attack, another server can take precautions before the same attack occurs on another server.fail2ban is a network security tool that uses the IDPS (Intrusion Detection and Prevention System) method which is an extension of the IDS (Intrusion Detection System) combined with IP tables so that it can detect and prevent suspicious activities on a network, fail2ban automatically default can only run on one server without being able to synchronize on other servers. With a network security system that can run on multiple servers, the attack prevention process can be done faster because when one server detects an attack, another server will take precautions by retrieving the information that has entered the collector database synchronizing all servers other servers can prevent attacks before an attack occurs on that server.
Ciphertext-Policy Attribute-Based Encryption with Multi-keyword Search over Medical Cloud Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :277—284.
.
2020. Over the years, public health has faced a large number of challenges like COVID-19. Medical cloud computing is a promising method since it can make healthcare costs lower. The computation of health data is outsourced to the cloud server. If the encrypted medical data is not decrypted, it is difficult to search for those data. Many researchers have worked on searchable encryption schemes that allow executing searches on encrypted data. However, many existing works support single-keyword search. In this article, we propose a patient-centered fine-grained attribute-based encryption scheme with multi-keyword search (CP-ABEMKS) for medical cloud computing. First, we leverage the ciphertext-policy attribute-based technique to construct trapdoors. Then, we give a security analysis. Besides, we provide a performance evaluation, and the experiments demonstrate the efficiency and practicality of the proposed CP-ABEMKS.
RF-Rhythm: Secure and Usable Two-Factor RFID Authentication. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2194—2203.
.
2020. Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user's tapping rhythm. In addition to verifying the RFID card's identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user's secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.
Two Factor Hash Verification (TFHV): A Novel Paradigm for Remote Authentication. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.
.
2020. Current paradigms for client-server authentication often rely on username/password schemes. Studies show such schemes are increasingly vulnerable to heuristic and brute-force attacks. This is either due to poor practices by users such as insecure weak passwords, or insecure systems by server operators. A recurring problem in any system which retains information is insecure management policies for sensitive information, such as logins and passwords, by both hosts and users. Increased processing power on the horizon also threatens the security of many popular hashing algorithms. Furthermore, increasing reliance on applications that exchange sensitive information has resulted in increased urgency. This is demonstrated by a large number of mobile applications being deemed insecure by Open Web Application Security Project (OWASP) standards. This paper proposes a secure alternative technique of authentication that retains the current ecosystem, while minimizes attack vectors without inflating responsibilities on users or server operators. Our proposed authentication scheme uses layered encryption techniques alongside a two-part verification process. In addition, it provides dynamic protection for preventing against common cyber-attacks such as replay and man-in-the-middle attacks. Results show that our proposed authentication mechanism outperform other schemes in terms of deployability and resilience to cyber-attacks, without inflating transaction's speed.
TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). :187—191.
.
2020. User identity and personal information remain to be hot targets for attackers. From recent surveys, we can categorize that 65.5% of all cyberattacks in 2018 target user information. Sadly, most of the time, the system's security depends on how secure it is the implementation from the provider-side. One defense technique that the user can take part in is applying a two-factor authentication (2FA) system for their account. However, we observe that state-of-the-art 2FAs have several weaknesses and limitations. In this paper, we propose TwoChain, a blockchain-based 2FA system for web services to overcome those issues. Our implementation facilitates an alternative 2FA system that is more secure, disposable, and decentralized. Finally, we release TwoChain for public use.
TS2FA: Trilateration System Two Factor Authentication. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
.
2020. Two-factor authentication (2FA) systems implement by verifying at least two factors. A factor is something a user knows (password, or phrase), something a user possesses (smart card, or smartphone), something a user is (fingerprint, or iris), something a user does (keystroke), or somewhere a user is (location). In the existing 2FA system, a user is required to act in order to implement the second layer of authentication which is not very user-friendly. Smart devices (phones, laptops, tablets, etc.) can receive signals from different radio frequency technologies within range. As these devices move among networks (Wi-Fi access points, cellphone towers, etc.), they receive broadcast messages, some of which can be used to collect information. This information can be utilized in a variety of ways, such as establishing a connection, sharing information, locating devices, and, most appropriately, identifying users in range. The principal benefit of broadcast messages is that the devices can read and process the embedded information without being connected to the broadcaster. Moreover, the broadcast messages can be received only within range of the wireless access point sending the broadcast, thus inherently limiting access to those devices in close physical proximity and facilitating many applications dependent on that proximity. In the proposed research, a new factor is used - something that is in the user's environment with minimal user involvement. Data from these broadcast messages is utilized to implement a 2FA scheme by determining whether two devices are proximate or not to ensure that they belong to the same user.
Proposing Innovative Perturbation Algorithm for Securing Portable Data on Cloud Servers. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :360—364.
.
2020. Cloud computing provides an open architecture and resource sharing computing platform with pay-per-use model. It is now a popular computing platform and most of the new internet based computing services are on this innovation supported environment. We consider it as innovation supported because developers are more focused here on the service design, rather on arranging the infrastructure, network, management of the resources, etc. These all things are available in cloud computing on hired basis. Now, a big question arises here is the security of data or privacy of data because the service provider is already using the infrastructure, network, storage, processors, and other more resources from the third party. So, the security or privacy of the portable user's data is the main motivation for writing this research paper. In this paper, we are proposing an innovative perturbation algorithm MAP() to secure the portable user's data on the cloud server.
An Attribute Based Encryption Scheme with Dynamic Attributes Supporting in the Hybrid Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :271—273.
.
2020. Cloud computing is the flexible platform to outsource the data from local server to commercial cloud. However cloud provides tremendous benefits to user, data privacy and data leakage reduce the attention of cloud. For protecting data privacy and reduce data leakage various techniques has to be implemented in cloud. There are various types of cloud environment, but we concentrate on Hybrid cloud. Hybrid cloud is nothing but combination of more than two or more cloud. Where critical operations are performed in private cloud and non critical operations are performed in public cloud. So, it has numerous advantages and criticality too. In this paper, we focus on data security through encryption scheme over Hybrid Cloud. There are various encryption schemes are close to us but it also have data security issues. To overcome these issues, Attribute Based Encryption Scheme with Dynamic Attributes Supporting (ABE-DAS) has proposed. Attribute based Encryption Scheme with Dynamic Attributes Supporting technique enhance the security of the data in hybrid cloud.
Solving the Interdependency Problem: A Secure Virtual Machine Allocation Method Relying on the Attacker’s Efficiency and Coverage. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :440—449.
.
2020. Cloud computing dominates the information communication and technology landscape despite the presence of lingering security issues such as the interdependency problem. The latter is a co-residence conundrum where the attacker successfully compromises his target virtual machine by first exploiting the weakest (in terms of security) virtual machine that is hosted in the same server. To tackle this issue, we propose a novel virtual machine allocation policy that is based on the attacker's efficiency and coverage. By default, our allocation policy considers all legitimate users as attackers and then proceeds to host the users' virtual machines to the server where their efficiency and/or coverage are the smallest. Our simulation results show that our proposal performs better than the existing allocation policies that were proposed to tackle the same issue, by reducing the attacker's possibilities to zero and by using between 30 - 48% less hosts.
Framework for FOGIoT based Smart Video Surveillance System (SVSS). 2020 International Conference on Computational Performance Evaluation (ComPE). :797–799.
.
2020. In this ever updating digitalized world, everything is connected with just few touches away. Our phone is connected with things around us, even we can see live video of our home, shop, institute or company on the phone. But we can't track suspicious activity 24*7 hence needed a smart system to track down any suspicious activity taking place, so it automatically notifies us before any robbery or dangerous activity takes place. We have proposed a framework to tackle down this security matter with the help of sensors enabled cameras(IoT) connected through a FOG layer hence called FOGIoT which consists of small servers configured with Human Activity Analysis Algorithm. Any suspicious activity analyzed will be reported to responsible personnel and the due action will be taken place.
A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0176–0182.
.
2020. The Representational State Transfer (REST) is a distributed application architecture style which adopted on providing various network services. The identity authentication protocol Kerberos has been used to guarantee the security identity authentication of many service platforms. However, the deployment of Kerberos protocol is limited by the defects such as password guessing attacks, data tampering, and replay attacks. In this paper, an optimized Kerberos protocol is proposed and applied in a REST-style Cloud Storage Architecture. Firstly, we propose a Lately Used Newly (LUN) key replacement method to resist the password guessing attacks in Kerberos protocol. Secondly, we propose a formatted signature algorithm and a combination of signature string and time stamp method to cope with the problems of tampering and replay attacks which in deploying Kerberos. Finally, we build a security protection module using the optimized Kerberos protocol to guarantee a secure identity authentication and the reliable data communication between the client and the server. Analyses show that the module significantly improves the security of Kerberos protocol in REST-style cloud storage services.
A Security Approach to Build a Trustworthy Ubiquitous Learning System. 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC). :1–6.
.
2020. Modern learning systems, say a tutoring platform, has many characteristics like digital data presentation with interactivity, mobility, which provides information about the study-content as per the learners understanding levels, intelligent learners behavior, etc. A sophisticated ubiquitous learner system maintains security and monitors the mischievous behavior of the learner, and authenticates and authorizes every learner, which is quintessential. Some of the existing security schemes aim only at single entry-point authentication, which may not suit to ubiquitous tutor platform. We propose a secured authentication scheme which is based on the information utility of the learner. Whenever a learner moves into a tutor platform, which has ubiquitous learner system technology, the system at first-begins with learners' identity authentication, and then it initiates trust evaluation after the successful authentication of the learner. Periodic credential verification of the learner will be carried out, which intensifies the authentication scheme of the system proposed. BAN logic has been used to prove the authentication in this system. The proposed authentication scheme has been simulated and analyzed for the indoor tutor platform environment.
A Multi-Factor Access Control and Ownership Transfer Framework for Future Generation Healthcare Systems. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :93–98.
.
2020. The recent advancements in ubiquitous sensing powered by Wireless Computing Technologies (WCT) and Cloud Computing Services (CCS) have introduced a new thinking ability amongst researchers and healthcare professionals for building secure and connected healthcare systems. The integration of Internet of Things (IoT) in healthcare services further brings in several challenges with it, mainly including encrypted communication through vulnerable wireless medium, authentication and access control algorithms and ownership transfer schemes (important patient information). Major concern of such giant connected systems lies in creating the data handling strategies which is collected from the billions of heterogeneous devices distributed across the hospital network. Besides, the resource constrained nature of IoT would make these goals difficult to achieve. Motivated by aforementioned deliberations, this paper introduces a novel approach in designing a security framework for edge-computing based connected healthcare systems. An efficient, multi-factor access control and ownership transfer mechanism for edge-computing based futuristic healthcare applications is the core of proposed framework. Data scalability is achieved by employing distributed approach for clustering techniques that analyze and aggregate voluminous data acquired from heterogeneous devices individually before it transits the to the cloud. Moreover, data/device ownership transfer scheme is considered to be the first time in its kind. During ownership transfer phase, medical server facilitates user to transfer the patient information/ device ownership rights to the other registered users. In order to avoid the existing mistakes, we propose a formal and informal security analysis, that ensures the resistance towards most common IoT attacks such as insider attack, denial of distributed service (DDoS) attack and traceability attacks.
Research on Data Transmission Security Architecture Design and Process. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:1195—1199.
.
2020. With the development of business, management companies are currently facing a series of problems and challenges in terms of resource allocation and task management. In terms of the technical route, this research will use cloud services to implement the public honesty system, and carry out secondary development and interface development on this basis, the architecture design and the formulation of the process are realized for various types, relying on the support of the knowledge base and case library, through the system intelligent configuration corresponding work instructions, safety work instructions, case references and other reference information to the existing work plan to provide managers Reference; managers can configure and adjust the work content by themselves through specific requirements to efficiently and flexibly adapt to the work content.
Algebraic Signature Based Data Possession Checking Method with Cloud Storage. 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). :11—16.
.
2020. Cloud computing has been envisioned as a next generation information technology (IT) paradigm. The risk of losing data stored with any untrustworthy service provider is the key barrier to widespread uptake of cloud computing. This paper proposes an algebraic signature based remote data possession checking (RDPC) scheme to verify the integrity of the data stored in the cloud. This scheme integrates forward error-correcting codes to enhance the data possession guarantee, which can recover the data when a small amount of file has been deleted. The scheme allows verification without the need for the auditor to compare against the original data, which reduces the communication complexity dramatically. The storage complexity of cloud user is reduced to several bytes' information. Extensive security analysis and simulation show that the proposed scheme is highly provably secure. Finally, experiment results reveal that the computation performance is effective, and bounded by disk I/O.
Reliability Evaluation for a Cloud Computer Network with Fog Computing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :682–683.
.
2020. The most recent and important developments in the field of computer networks are cloud and fog computing. In this study, modern cloud computer networks comprising computers, internet of things (IoT), fog servers, and cloud servers for data transmission, is investigated. A cloud computer networks can be modeled as a network with nodes and arcs, in which each arc represents a transmission line, and each node represents an IoT device, a fog server, or a cloud server. Each transmission line has several possible capacities and is regarded as a multistate. The network is termed a multi-state cloud computer network (MCCN). this study firstly constructs the mathematic model to elucidate the flow relationship among the IoT devices, edge servers, and cloud servers and subsequently develop an algorithm to evaluate the performance of the MCCN by calculating network reliability which is defined as the probability of the data being successfully processed by the MCCN.
Security Issues With Fog Computing. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :123–128.
.
2020. Fog computing or edge computing or fogging extends cloud computing to the edge of the network. It operates on the computing, storage and networking services between user-end devices and cloud computing data centres. However, in the process of caring out these operations, fog computing is faced with several security issues. These issues may be inherited from cloud computing systems or may arise due to fog computing systems alone. Some of the major gaps in providing a secure platform for the fog computing process arise from interim operational steps like authentication or identification, which often expands to large scale performance issues in fog computing. Thus, these issues and their implications on fog computing databases, and the possible available solutions are researched and provided for a better scope of future use and growth of fog computing systems by bridging the gaps of security issues in it.
Secure Coded Matrix Multiplication Against Cooperative Attack in Edge Computing. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :547–556.
.
2020. In recent years, the computation security of edge computing has been raised as a major concern since the edge devices are often distributed on the edge of the network, less trustworthy than cloud servers and have limited storage/ computation/ communication resources. Recently, coded computing has been proposed to protect the confidentiality of computing data under edge device's independent attack and minimize the total cost (resource consumption) of edge system. In this paper, for the cooperative attack, we design an efficient scheme to ensure the information-theory security (ITS) of user's data and further reduce the total cost of edge system. Specifically, we take matrix multiplication as an example, which is an important module appeared in many application operations. Moreover, we theoretically analyze the necessary and sufficient conditions for the existence of feasible scheme, prove the security and decodeability of the proposed scheme. We also prove the effectiveness of the proposed scheme through considerable simulation experiments. Compared with the existing schemes, the proposed scheme further reduces the total cost of edge system. The experiments also show a trade-off between storage and communication.