Biblio
Popularization of the Internet-of-Things (IoT) has brought widespread concerns on IoT security, especially in face of several recent security incidents related to IoT devices. Due to the resource-constrained nature of many IoT devices, security offloading has been proposed to provide good-enough security for IoT with minimum overhead on the devices. In this paper, we investigate the inevitable risk associated with security offloading: the unprotected and unmonitored transmission from IoT devices to the offloaded security mechanisms. An important challenge in modeling the security risk is the dynamic nature of IoT due to demand fluctuations and infrastructure instability. We propose a stochastic model to capture both the expected and worst-case security risks of an IoT system. We then propose a framework to efficiently address the optimal robust deployment of security mechanisms in IoT. We use results from extensive simulations to demonstrate the superb performance and efficiency of our approach compared to several other algorithms.
The need to process the verity, volume and velocity of data generated by today's Internet of Things (IoT) devices has pushed both academia and the industry to investigate new architectural alternatives to support the new challenges. As a result, Edge Computing (EC) has emerged to address these issues, by placing part of the cloud resources (e.g., computation, storage, logic) closer to the edge of the network, which allows faster and context dependent data analysis and storage. However, as EC infrastructures grow, different providers who do not necessarily trust each other need to collaborate in order serve different IoT devices. In this context, EC infrastructures, IoT devices and the data transiting the network all need to be subject to identity and provenance checks, in order to increase trust and accountability. Each device/data in the network needs to be identified and the provenance of its actions needs to be tracked. In this paper, we propose a blockchain container based architecture that implements the W3C-PROV Data Model, to track identities and provenance of all orchestration decisions of a business network. This architecture provides new forms of interaction between the different stakeholders, which supports trustworthy transactions and leads to a new decentralized interaction model for IoT based applications.
In spite of being a promising technology which will make our lives a lot easier we cannot be oblivious to the fact IoT is not safe from online threat and attacks. Thus, along with the growth of IoT we also need to work on its aspects. Taking into account the limited resources that these devices have it is important that the security mechanisms should also be less complex and do not hinder the actual functionality of the device. In this paper, we propose an ECC based lightweight authentication for IoT devices which deploy RFID tags at the physical layer. ECC is a very efficient public key cryptography mechanism as it provides privacy and security with lesser computation overhead. We also present a security and performance analysis to verify the strength of our proposed approach.
ARM devices (mobile phone, IoT devices) are getting more popular in our daily life due to the low power consumption and cost. These devices carry a huge number of user's private information, which attracts attackers' attention and increase the security risk. The operating systems (e.g., Android, Linux) works out many memory data protection strategies on user's private information. However, the monolithic OS may contain security vulnerabilities that are exploited by the attacker to get root or even kernel privilege. Once the kernel privilege is obtained by the attacker, all data protection strategies will be gone and user's private information can be taken away. In this paper, we propose a hardened memory data protection framework called H-Securebox to defeat kernel-level memory data stolen attacks. H-Securebox leverages ARM hardware virtualization technique to protect the data on the memory with hypervisor privilege. We designed three types H-Securebox for programing developers to use. Although the attacker may have kernel privilege, she can not touch private data inside H-Securebox, since hypervisor privilege is higher than kernel privilege. With the implementation of H-Securebox system assisting by a tiny hypervisor on Raspberry Pi2 development board, we measure the performance overhead of our system and do the security evaluations. The results positively show that the overhead is negligible and the malicious application with root or kernel privilege can not access the private data protected by our system.
As the Internet of Things (IoT) continues to grow, there arises concerns and challenges with regard to the security and privacy of the IoT system. In this paper, we propose a FOg CompUting-based Security (FOCUS) system to address the security challenges in the IoT. The proposed FOCUS system leverages the virtual private network (VPN) to secure the access channel to the IoT devices. In addition, FOCUS adopts a challenge-response authentication to protect the VPN server against distributed denial of service (DDoS) attacks, which can further enhance the security of the IoT system. FOCUS is implemented in fog computing that is close to the end users, thus achieving a fast and efficient protection. We demonstrate FOCUS in a proof-of-concept prototype, and conduct experiments to evaluate its performance. The results show that FOCUS can effectively filter out malicious attacks with a very low response latency.
Many companies within the Internet of Things (IoT) sector rely on the personal data of users to deliver and monetize their services, creating a high demand for personal information. A user can be seen as making a series of transactions, each involving the exchange of personal data for a service. In this paper, we argue that privacy can be described quantitatively, using the game- theoretic concept of value of information (VoI), enabling us to assess whether each exchange is an advantageous one for the user. We introduce PrivacyGate, an extension to the Android operating system built for the purpose of studying privacy of IoT transactions. An example study, and its initial results, are provided to illustrate its capabilities.
The Internet of Things leads to the inter-connectivity of a wide range of devices. This heterogeneity of hardware and software poses significant challenges to security. Constrained IoT devices often do not have enough resources to carry the overhead of an intrusion protection system or complex security protocols. A typical initial step in network security is a network scan in order to find vulnerable nodes. In the context of IoT, the initiator of the scan can be particularly interested in finding constrained devices, assuming that they are easier targets. In IoT networks hosting devices of various types, performing a scan with a high discovery rate can be a challenging task, since low-power networks such as IEEE 802.15.4 are easily overloaded. In this paper, we propose an approach to increase the efficiency of network scans by combining them with active network measurements. The measurements allow the scanner to differentiate IoT nodes by the used network technology. We show that the knowledge gained from this differentiation can be used to control the scan strategy in order to reduce probe losses.
This paper addresses the need for standard communication protocols for IoT devices with limited power and computational capabilities. The world is rapidly changing with the proliferation and deployment of IoT devices. This will bring in new communication challenges as these devices are connected to Internet and need to communicate with each other in real time. The paper provides an overview of IoT system architecture and the forthcoming challenges it will bring. There is an urging need to establish standards for communication in the IoT world. With the recent development of new protocols like CoAP, 6LowPAN, IEEE 802.15.4 and Thread in different layers of OSI model, additional challenges also present themselves. Performance and data management is becoming more critical than ever before due to the complexity of connecting raging number of IoT devices. The performance of the systems dealing with IoT devices will require appropriate capacity planning the associated development of data centers. Finally, the paper also presents some reasonable approaches to address the above issues in the IoT world.
As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.
There are billions of Internet of things (IoT) devices connecting to the Internet and the number is increasing. As a still ongoing technology, IoT can be used in different fields, such as agriculture, healthcare, manufacturing, energy, retailing and logistics. IoT has been changing our world and the way we live and think. However, IoT has no uniform architecture and there are different kinds of attacks on the different layers of IoT, such as unauthorized access to tags, tag cloning, sybil attack, sinkhole attack, denial of service attack, malicious code injection, and man in middle attack. IoT devices are more vulnerable to attacks because it is simple and some security measures can not be implemented. We analyze the privacy and security challenges in the IoT and survey on the corresponding solutions to enhance the security of IoT architecture and protocol. We should focus more on the security and privacy on IoT and help to promote the development of IoT.
The Internet of Things (IoT) has become ubiquitous in our daily life as billions of devices are connected through the Internet infrastructure. However, the rapid increase of IoT devices brings many non-traditional challenges for system design and implementation. In this paper, we focus on the hardware security vulnerabilities and ultra-low power design requirement of IoT devices. We briefly survey the existing design methods to address these issues. Then we propose an approximate computing based information hiding approach that provides security with low power. We demonstrate that this security primitive can be applied for security applications such as digital watermarking, fingerprinting, device authentication, and lightweight encryption.
Security and privacy issues of the Internet of Things (IoT in short, hereafter) attracts the hot topic of researches through these years. As the relationship between user and server become more complicated than before, the existing security solutions might not provide exhaustive securities in IoT environment and novel solutions become new research challenges, e.g., the solutions based on symmetric cryptosystems are unsuited to handle with the occasion that decryption is only allowed in specific time range. In this paper, a new scalable one-time file encryption scheme combines reliable cryptographic techniques, which is named OTFEP, is proposed to satisfy specialized security requirements. One of OTFEP's key features is that it offers a mechanism to protect files in the database from arbitrary visiting from system manager or third-party auditors. OTFEP uses two different approaches to deal with relatively small file and stream file. Moreover, OTFEP supports good node scalability and secure key distribution mechanism. Based on its practical security and performance, OTFEP can be considered in specific IoT devices where one-time file encryption is necessary.
Internet of Things is gaining research attention as one of the important fields that will affect our daily life vastly. Today, around us this revolutionary technology is growing and evolving day by day. This technology offers certain benefits like automatic processing, improved logistics and device communication that would help us to improve our social life, health, living standards and infrastructure. However, due to their simple architecture and presence on wide variety of fields they pose serious concern to security. Due to the low end architecture there are many security issues associated with IoT network devices. In this paper, we try to address the security issue by proposing JavaScript sandbox as a method to execute IoT program. Using this sandbox we also implement the strategy to control the execution of the sandbox while the program is being executed on it.
Lightweight block ciphers, which are required for IoT devices, have attracted attention. Simeck, which is one of the most popular lightweight block ciphers, can be implemented on IoT devices in the smallest area. Regarding the hardware security, the threat of electromagnetic analysis has been reported. However, electromagnetic analysis of Simeck has not been reported. Therefore, this study proposes a dedicated electromagnetic analysis for a lightweight block cipher Simeck to ensure the safety of IoT devices in the future. To our knowledge, this is the first electromagnetic analysis for Simeck. Experiments using a FPGA prove the validity of the proposed method.
- « first
- ‹ previous
- 1
- 2
- 3
- 4