Biblio
Imposing security in MANET is very challenging and hot topic of research science last two decades because of its wide applicability in applications like defense. Number of efforts has been made in this direction. But available security algorithms, methods, models and framework may not completely solve this problem. Motivated from various existing security methods and outlier detection, in this paper novel simple but efficient outlier detection scheme based security algorithm is proposed to protect the Ad hoc on demand distance vector (AODV) reactive routing protocol from Black hole attack in mobile ad hoc environment. Simulation results obtained from network simulator tool evident the simplicity, robustness and effectiveness of the proposed algorithm over the original AODV protocol and existing methods.
Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.
Mobile ad hoc networks (MANETs) play a significant role for communication whenever infrastructure is not available. In MANET, the group communication-based applications use the multicast routing protocol, where there is a single sender node and a group of receiver nodes. The benefits of multicast routing protocols are the capability to reduce the communication costs and saving the network resources by reproduction of the message over a shared network. The security is the main concern for multicast routing protocol in MANET, as it includes large number of participants. The security issues become more rigorous in a multicast communication due to its high variedness and routing difficulty. In this paper, we consider the internal attack, namely Multicast Announcement Packet Fabrication Attack on PUMA (Protocol for Unified Multicasting through Announcements). We proposed the security approach to detect the attacks as multicast activity-based overhearing technique, i.e., traffic analysis-based detection method with a unique key value. The performance analysis, shows an improved network performance of proposed approach over PUMA.
Reliability and robustness of Internet of Things (IoT)-cloud-based communication is an important issue for prospective development of the IoT concept. In this regard, a robust and unique client-to-cloud communication physical layer is required. Physical Unclonable Function (PUF) is regarded as a suitable physics-based random identification hardware, but suffers from reliability problems. In this paper, we propose novel hardware concepts and furthermore an analysis method in CMOS technology to improve the hardware-based robustness of the generated PUF word from its first point of generation to the last cloud-interfacing point in a client. Moreover, we present a spectral analysis for an inexpensive high-yield implementation in a 65nm generation. We also offer robust monitoring concepts for the PUF-interfacing communication physical layer hardware.
In vehicular networks, each message is signed by the generating node to ensure accountability for the contents of that message. For privacy reasons, each vehicle uses a collection of certificates, which for accountability reasons are linked at a central authority. One such design is the Security Credential Management System (SCMS) [1], which is the leading credential management system in the US. The SCMS is composed of multiple components, each of which has a different task for key management, which are logically separated. The SCMS is designed to ensure privacy against a single insider compromise, or against outside adversaries. In this paper, we demonstrate that the current SCMS design fails to achieve its design goal, showing that a compromised authority can gain substantial information about certificate linkages. We propose a solution that accommodates threshold-based detection, but uses relabeling and noise to limit the information that can be learned from a single insider adversary. We also analyze our solution using techniques from differential privacy and validate it using traffic-simulator based experiments. Our results show that our proposed solution prevents privacy information leakage against the compromised authority in collusion with outsider attackers.
Today's major concern is not only maximizing the information rate through linear network coding scheme which is intelligent combination of information symbols at sending nodes but also secured transmission of information. Though cryptographic measure of security (computational security) gives secure transmission of information, it results system complexity and consequent reduction in efficiency of the communication system. This problem leads to alternative way of optimally secure and maximized information transmission. The alternative solution is secure network coding which is information theoretic approach. Depending up on applications, different security measures are needed during the transmission of information over wiretapped network with potential attack by the adversaries. In this research work, mathematical model for different security constraints with upper and lower boundaries were studied depending up on the randomness added to the source message and hence the security constraints on linear network code for randomized source messages depends both on randomness added and number of random source symbols. If the source generates large number random symbols, lesser number of random keys can give higher security to the information but information theoretic security bounds remain same. Hence maximizing randomness to the source is equivalent to adding security level.
Information-Centric Network (ICN) is one of the most promising network architecture to handle the problem of rapid increase of data traffic because it allows in-network cache. ICNs with Linear Network Coding (LNC) can greatly improve the performance of content caching and delivery. In this paper, we propose a Secure Content Caching and Routing (SCCR) framework based on Software Defined Network (SDN) to find the optimal cache management and routing for secure content delivery, which aims to firstly minimize the total cost of cache and bandwidth consumption and then minimize the usage of random chunks to guarantee information theoretical security (ITS). Specifically, we firstly propose the SCCR problem and then introduce the main ideas of the SCCR framework. Next, we formulate the SCCR problem to two Linear Programming (LP) formulations and design the SCCR algorithm based on them to optimally solve the SCCR problem. Finally, extensive simulations are conducted to evaluate the proposed SCCR framework and algorithms.
Trust in SSL-based communications is provided by Certificate Authorities (CAs) in the form of signed certificates. Checking the validity of a certificate involves three steps: (i) checking its expiration date, (ii) verifying its signature, and (iii) ensuring that it is not revoked. Currently, such certificate revocation checks are done either via Certificate Revocation Lists (CRLs) or Online Certificate Status Protocol (OCSP) servers. Unfortunately, despite the existence of these revocation checks, sophisticated cyber-attackers, may trick web browsers to trust a revoked certificate, believing that it is still valid. Consequently, the web browser will communicate (over TLS) with web servers controlled by cyber-attackers. Although frequently updated, nonced, and timestamped certificates may reduce the frequency and impact of such cyber-attacks, they impose a very large overhead to the CAs and OCSP servers, which now need to timestamp and sign on a regular basis all the responses, for every certificate they have issued, resulting in a very high overhead. To mitigate this overhead and provide a solution to the described cyber-attacks, we present CCSP: a new approach to provide timely information regarding the status of certificates, which capitalizes on a newly introduced notion called signed collections. In this paper, we present the design, preliminary implementation, and evaluation of CCSP in general, and signed collections in particular. Our preliminary results suggest that CCSP (i) reduces space requirements by more than an order of magnitude, (ii) lowers the number of signatures required by 6 orders of magnitude compared to OCSP-based methods, and (iii) adds only a few milliseconds of overhead in the overall user latency.
This paper presents our results from identifying anddocumenting false positives generated by static code analysistools. By false positives, we mean a static code analysis toolgenerates a warning message, but the warning message isnot really an error. The goal of our study is to understandthe different kinds of false positives generated so we can (1)automatically determine if an error message is truly indeed a truepositive, and (2) reduce the number of false positives developersand testers must triage. We have used two open-source tools andone commercial tool in our study. The results of our study haveled to 14 core false positive patterns, some of which we haveconfirmed with static code analysis tool developers.
Now a days transferring of texts, documents over the internet are the tasks in common. The transferred text must be cryptographically protected so that cannot be accessed by the invaders. In the communication medium, protected data uses cryptographic techniques and random bit generators. Once the key is generated by the random generators, how well we can secure and transmit fast in the network plays a vital role by applying appropriate algorithm. As a solution, a system is developed by symmetric algorithmic approach, uses AES and Fiestel content and also implements three different ways of random generators such as pseudorandom number generator (PRNG), linear multiples of prime sequence based method and nonlinear prime methods. Multilevel encryption and decryption techniques are adopted in the solution to transfer the information over the network securely with reduced delay. This method provides very strong technique against different kinds of attacks.
Wireless wearable embedded devices dominate the Internet of Things (IoT) due to their ability to provide useful information about the body and its local environment. The constrained resources of low power processors, however, pose a significant challenge to run-time error logging and hence, product reliability. Error logs classify error type and often system state following the occurrence of an error. Traditional error logging algorithms attempt to balance storage and accuracy by selectively overwriting past log entries. Since a specific combination of firmware faults may result in system instability, preserving all error occurrences becomes increasingly beneficial as IOT systems become more complex. In this paper, a novel hash-based error logging algorithm is presented which has both constant insertion time and constant memory while also exhibiting no false negatives and an acceptable false positive error rate. Both theoretical analysis and simulations are used to compare the performance of the hash-based and traditional approaches.
Wearable and mobile medical devices provide efficient, comfortable, and economic health monitoring, having a wide range of applications from daily to clinical scenarios. Health data security becomes a critically important issue. Electrocardiogram (ECG) has proven to be a potential biometric in human recognition over the past decade. Unlike conventional authentication methods using passwords, fingerprints, face, etc., ECG signal can not be simply intercepted, duplicated, and enables continuous identification. However, in many of the studies, algorithms developed are not suitable for practical application, which usually require long ECG data for authentication. In this work, we introduce a two-phase authentication using artificial neural network (NN) models. This algorithm enables fast authentication within only 3 seconds, meanwhile achieves reasonable performance in recognition. We test the proposed method in a controlled laboratory experiment with 50 subjects. Finger ECG signals are collected using a mobile device at different times and physical statues. At the first stage, a ``General'' NN model is constructed based on data from the cohort and used for preliminary screening, while at the second stage ``Personal'' NN models constructed from single individual's data are applied as fine-grained identification. The algorithm is tested on the whole data set, and on different sizes of subsets (5, 10, 20, 30, and 40). Results proved that the proposed method is feasible and reliable for individual authentication, having obtained average False Acceptance Rate (FAR) and False Rejection Rate (FRR) below 10% for the whole data set.
In this paper we present a case study of applying fitness dimensions in API design assessment. We argue that API assessment is company specific and should take into consideration various stakeholders in the API ecosystem. We identified new fitness dimensions and introduced the notion of design considerations for fitness dimensions such as priorities, tradeoffs, and technical versus cognitive classification.
Wikipedia is one of the most popular information platforms on the Internet. The user access pattern to Wikipedia pages depends on their relevance in the current worldwide social discourse. We use publically available statistics about the top-1000 most popular pages on each day to estimate the efficiency of caches for support of the platform. While the data volumes are moderate, the main goal of Wikipedia caches is to reduce access times for page views and edits. We study the impact of most popular pages on the achievable cache hit rate in comparison to Zipf request distributions and we include daily dynamics in popularity.
There are continuous hacking and social issues regarding APT (Advanced Persistent Threat - APT) attacks and a number of antivirus businesses and researchers are making efforts to analyze such APT attacks in order to prevent or cope with APT attacks, some host PC security technologies such as firewalls and intrusion detection systems are used. Therefore, in this study, malignant behavior patterns were extracted by using an API of PE files. Moreover, the FP-Growth Algorithm to extract behavior information generated in the host PC in order to overcome the limitation of the previous signature-based intrusion detection systems. We will utilize this study as fundamental research about a system that extracts malignant behavior patterns within networks and APIs in the future.
Cloud storage is vulnerable to advanced persistent threats (APTs), in which an attacker launches stealthy, continuous, well-funded and targeted attacks on storage devices. In this paper, cumulative prospect theory (CPT) is applied to study the interactions between a defender of cloud storage and an APT attacker when each of them makes subjective decisions to choose the scan interval and attack interval, respectively. Both the probability weighting effect and the framing effect are applied to model the deviation of subjective decisions of end-users from the objective decisions governed by expected utility theory, under uncertain attack durations. Cumulative decision weights are used to describe the probability weighting effect and the value distortion functions are used to represent the framing effect of subjective APT attackers and defenders in the CPT-based APT defense game, rather than discrete decision weights, as in earlier prospect theoretic study of APT defense. The Nash equilibria of the CPT-based APT defense game are derived, showing that a subjective attacker becomes risk-seeking if the frame of reference for evaluating the utility is large, and becomes risk-averse if the frame of reference for evaluating the utility is small.
The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.
The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.
Business or military missions are supported by hardware and software systems. Unanticipated cyber activities occurring in supporting systems can impact such missions. In order to quantify such impact, we describe a layered graphical model as an extension of forensic investigation. Our model has three layers: the upper layer models operational tasks that constitute the mission and their inter-dependencies. The middle layer reconstructs attack scenarios from available evidence to reconstruct their inter-relationships. In cases where not all evidence is available, the lower level reconstructs potentially missing attack steps. Using the three levels of graphs constructed in these steps, we present a method to compute the impacts of attack activities on missions. We use NIST National Vulnerability Database's (NVD)-Common Vulnerability Scoring System (CVSS) scores or forensic investigators' estimates in our impact computations. We present a case study to show the utility of our model.
Many a time's assumptions are key to inventions. One such notion in recent past is about data exchange between two disjoint computer systems. It is always assumed that, if any two computers are separated physically without any inter communication, it is considered to be very secure and will not be compromised, the exchange of data between them would be impossible. But recent growth in the field of computers emphasizes the requirements of security analysis. One such security concern is with the air-gapped systems. This paper deals with the flaws and flow of air-gapped systems.
Ideally, minimizing the flow completion time (FCT) requires millions of priorities supported by the underlying network so that each flow has its unique priority. However, in production datacenters, the available switch priority queues for flow scheduling are very limited (merely 2 or 3). This practical constraint seriously degrades the performance of previous approaches. In this paper, we introduce Explicit Priority Notification (EPN), a novel scheduling mechanism which emulates fine-grained priorities (i.e., desired priorities or DP) using only two switch priority queues. EPN can support various flow scheduling disciplines with or without flow size information. We have implemented EPN on commodity switches and evaluated its performance with both testbed experiments and extensive simulations. Our results show that, with flow size information, EPN achieves comparable FCT as pFabric that requires clean-slate switch hardware. And EPN also outperforms TCP by up to 60.5% if it bins the traffic into two priority queues according to flow size. In information-agnostic setting, EPN outperforms PIAS with two priority queues by up to 37.7%. To the best of our knowledge, EPN is the first system that provides millions of priorities for flow scheduling with commodity switches.
A5-1 algorithm is a stream cipher used to encrypt voice data in GSM, which needs to be realized with high performance due to real-time requirements. Traditional implementation on FPGA or ASIC can't obtain a trade-off among performance, cost and flexibility. To this aim, this paper introduces CGRCA to implement A5-1, and in order to optimize the performance and resource consumption, this paper proposes a resource-based path seeking (RPS) algorithm to develop an advanced implementation. Experimental results show that final optimal throughput of A5-1 implemented on CGRCA is 162.87Mbps when the frequency is 162.87MHz, and the set-up time is merely 87 cycles, which is optimal among similar works.
Unmanned systems are increasing in number, while their manning requirements remain the same. To decrease manpower demands, machine learning techniques and autonomy are gaining traction and visibility. One barrier is human perception and understanding of autonomy. Machine learning techniques can result in “black box” algorithms that may yield high fitness, but poor comprehension by operators. However, Interactive Machine Learning (IML), a method to incorporate human input over the course of algorithm development by using neuro-evolutionary machine-learning techniques, may offer a solution. IML is evaluated here for its impact on developing autonomous team behaviors in an area search task. Initial findings show that IML-generated search plans were chosen over plans generated using a non-interactive ML technique, even though the participants trusted them slightly less. Further, participants discriminated each of the two types of plans from each other with a high degree of accuracy, suggesting the IML approach imparts behavioral characteristics into algorithms, making them more recognizable. Together the results lay the foundation for exploring how to team humans successfully with ML behavior.