Visible to the public Biblio

Found 201 results

Filters: Keyword is Throughput  [Clear All Filters]
2020-12-02
Tsurumi, R., Morita, M., Obata, H., Takano, C., Ishida, K..  2018.  Throughput Control Method Between Different TCP Variants Based on SP-MAC Over WLAN. 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.

We have proposed the Media Access Control method based on the Synchronization Phenomena of coupled oscillators (SP-MAC) to improve a total throughput of wireless terminals connected to a Access Point. SP-MAC can avoid the collision of data frames that occur by applying Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on IEEE 802.11 in Wireless local area networks (WLAN). Furthermore, a new throughput guarantee control method based on SP-MAC has been proposed. This method enable each terminal not only to avoid the collision of frames but also to obtain the requested throughput by adjusting the parameters of SP-MAC. In this paper, we propose a new throughput control method that realizes the fairness among groups of terminals that use the different TCP versions, by taking the advantage of our method that is able to change acquired throughput by adjusting parameters. Moreover, we confirm the effectiveness of the proposed method by the simulation evaluation.

2020-12-01
Hendrawan, H., Sukarno, P., Nugroho, M. A..  2019.  Quality of Service (QoS) Comparison Analysis of Snort IDS and Bro IDS Application in Software Define Network (SDN) Architecture. 2019 7th International Conference on Information and Communication Technology (ICoICT). :1—7.

Intrusion Detection system (IDS) was an application which was aimed to monitor network activity or system and it could find if there was a dangerous operation. Implementation of IDS on Software Define Network architecture (SDN) has drawbacks. IDS on SDN architecture might decreasing network Quality of Service (QoS). So the network could not provide services to the existing network traffic. Throughput, delay and packet loss were important parameters of QoS measurement. Snort IDS and bro IDS were tools in the application of IDS on the network. Both had differences, one of which was found in the detection method. Snort IDS used a signature based detection method while bro IDS used an anomaly based detection method. The difference between them had effects in handling the network traffic through it. In this research, we compared both tools. This comparison are done with testing parameters such as throughput, delay, packet loss, CPU usage, and memory usage. From this test, it was found that bro outperform snort IDS for throughput, delay , and packet loss parameters. However, CPU usage and memory usage on bro requires higher resource than snort.

2020-11-04
Howard, J. J., Blanchard, A. J., Sirotin, Y. B., Hasselgren, J. A., Vemury, A. R..  2018.  An Investigation of High-Throughput Biometric Systems: Results of the 2018 Department of Homeland Security Biometric Technology Rally. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). :1—7.

The 2018 Biometric Technology Rally was an evaluation, sponsored by the U.S. Department of Homeland Security, Science and Technology Directorate (DHS S&T), that challenged industry to provide face or face/iris systems capable of unmanned, traveler identification in a high-throughput security environment. Selected systems were installed at the Maryland Test Facility (MdTF), a DHS S&T affiliated bio-metrics testing laboratory, and evaluated using a population of 363 naive human subjects recruited from the general public. The performance of each system was examined based on measured throughput, capture capability, matching capability, and user satisfaction metrics. This research documents the performance of unmanned face and face/iris systems required to maintain an average total subject interaction time of less than 10 seconds. The results highlight discrepancies between the performance of biometric systems as anticipated by the system designers and the measured performance, indicating an incomplete understanding of the main determinants of system performance. Our research shows that failure-to-acquire errors, unpredicted by system designers, were the main driver of non-identification rates instead of failure-to-match errors, which were better predicted. This outcome indicates the need for a renewed focus on reducing the failure-to-acquire rate in high-throughput, unmanned biometric systems.

2020-11-02
Siddiqui, Abdul Jabbar, Boukerche, Azzedine.  2018.  On the Impact of DDoS Attacks on Software-Defined Internet-of-Vehicles Control Plane. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :1284—1289.

To enhance the programmability and flexibility of network and service management, the Software-Defined Networking (SDN) paradigm is gaining growing attention by academia and industry. Motivated by its success in wired networks, researchers have recently started to embrace SDN towards developing next generation wireless networks such as Software-Defined Internet of Vehicles (SD-IoV). As the SD-IoV evolves, new security threats would emerge and demand attention. And since the core of the SD-IoV would be the control plane, it is highly vulnerable to Distributed Denial of Service (DDoS) Attacks. In this work, we investigate the impact of DDoS attacks on the controllers in a SD-IoV environment. Through experimental evaluations, we highlight the drastic effects DDoS attacks could have on a SD-IoV in terms of throughput and controller load. Our results could be a starting point to motivate further research in the area of SD-IoV security and would give deeper insights into the problems of DDoS attacks on SD-IoV.

Shen, Hanji, Long, Chun, Li, Jun, Wan, Wei, Song, Xiaofan.  2018.  A Method for Performance Optimization of Virtual Network I/O Based on DPDK-SRIOV*. 2018 IEEE International Conference on Information and Automation (ICIA). :1550—1554.
Network security testing devices play important roles in Cyber security. Most of the current network security testing devices are based on proprietary hardware, however, the virtual network security tester needs high network I/O throughput performance. Therefore, the solution of the problem, which provides high-performance network I/O in the virtual scene will be explained in this paper. The method we proposed for virtualized network I/O performance optimization on a general hardware platform is able to achieve the I/O throughput performance of the proprietary hardware. The Single Root I/O Virtualization (SRIOV) of the physical network card is divided into a plurality of virtual network function of VF, furthermore, it can be added to different VF and VM. Extensive experiment illustrated that the virtualization and the physical network card sharing based on hardware are realized, and they can be used by Data Plane Development Kit (DPDK) and SRIOV technology. Consequently, the test instrument applications in virtual machines achieves the rate of 10Gps and meet the I/O requirement.
2020-10-29
Noguchi, Taku, Hayakawa, Mayuko.  2018.  Black Hole Attack Prevention Method Using Multiple RREPs in Mobile Ad Hoc Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :539—544.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.

Kaur, Jasleen, Singh, Tejpreet, Lakhwani, Kamlesh.  2019.  An Enhanced Approach for Attack Detection in VANETs Using Adaptive Neuro-Fuzzy System. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :191—197.
Vehicular Ad-hoc Networks (VANETs) are generally acknowledged as an extraordinary sort of Mobile Ad hoc Network (MANET). VANETs have seen enormous development in a decade ago, giving a tremendous scope of employments in both military and in addition non-military personnel exercises. The temporary network in the vehicles can likewise build the driver's capability on the road. In this paper, an effective information dispersal approach is proposed which enhances the vehicle-to-vehicle availability as well as enhances the QoS between the source and the goal. The viability of the proposed approach is shown with regards to the noteworthy gets accomplished in the parameters in particular, end to end delay, packet drop ratio, average download delay and throughput in comparison with the existing approaches.
2020-09-28
Yang, Shu, Chen, Ziteng, Cui, Laizhong, Xu, Mingwei, Ming, Zhongxing, Xu, Ke.  2019.  CoDAG: An Efficient and Compacted DAG-Based Blockchain Protocol. 2019 IEEE International Conference on Blockchain (Blockchain). :314–318.
Blockchain is seen as a promising technology to provide reliable and secure services due to its decentralized characteristic. However, because of the limited throughput, current blockchain platforms can not meet the transaction demand in practical use. Though researchers proposed many new solutions, they suffered either decentralization or security issues. In this paper, using Directed Acyclic Graph (DAG) structure, we improve the linear structure of traditional blockchain protocol. In the new structure, blocks are organized in levels and width, which will generate into a compacted DAG structure (CoDAG). To make CoDAG more efficient and secure, we design algorithms and protocols to place the new-generated blocks appropriately. Compared with traditional blockchain protocols, CoDAG improves the security and transaction verification time, and enjoys the consistency and liveness properties of blockchain. Taking adversary parties into consideration, two possible attack strategies are presented in this paper, and we further prove that CoDAG is a secure and robust protocol to resist them. The experimental results show that CoDAG can achieve 394 transactions per second, which is 56 times of Bitcoin's throughput and 26 times of Ethereum's.
2020-09-04
Zhang, Xiao, Wang, Yanqiu, Wang, Qing, Zhao, Xiaonan.  2019.  A New Approach to Double I/O Performance for Ceph Distributed File System in Cloud Computing. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :68—75.
Block storage resources are essential in an Infrastructure-as-a-Service(IaaS) cloud computing system. It is used for storing virtual machines' images. It offers persistent storage service even the virtual machine is off. Distribute storage systems are used to provide block storage services in IaaS, such as Amazon EBS, Cinder, Ceph, Sheepdog. Ceph is widely used as the backend block storage service of OpenStack platform. It converts block devices into objects with the same size and saves them on the local file system. The performance of block devices provided by Ceph is only 30% of hard disks in many cases. One of the key issues that affect the performance of Ceph is the three replicas for fault tolerance. But our research finds that replicas are not the real reason slow down the performance. In this paper, we present a new approach to accelerate the IO operations. The experiment results show that by using our storage engine, Ceph can offer faster IO performance than the hard disk in most cases. Our new storage engine provides more than three times up than the original one.
2020-07-20
Nguyen, Lan K., Tringe, Joseph W., Bosler, Clayton, Brunnenmeyer, David.  2019.  An Algorithmic Approach to Highly Resilient SATCOM. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :89–94.

This paper proposes a generic SATCOM control loop in a generic multivector structure to facilitate predictive analysis for achieving resiliency under time varying circumstances. The control loop provides strategies and actions in the context of game theory to optimize the resources for SATCOM networks. Details of the theoretic game and resources optimization approaches are discussed in the paper.

2020-07-16
Kadampot, Ishaque Ashar, Tahmasbi, Mehrdad, Bloch, Matthieu R.  2019.  Codes for Covert Communication over Additive White Gaussian Noise Channels. 2019 IEEE International Symposium on Information Theory (ISIT). :977—981.

We propose a coding scheme for covert communication over additive white Gaussian noise channels, which extends a previous construction for discrete memoryless channels. We first show how sparse signaling with On-Off keying fails to achieve the covert capacity but that a modification allowing the use of binary phase-shift keying for "on" symbols recovers the loss. We then construct a modified pulse-position modulation scheme that, combined with multilevel coding, can achieve the covert capacity with low-complexity error-control codes. The main contribution of this work is to reconcile the tension between diffuse and sparse signaling suggested by earlier information-theoretic results.

Harley, Peter M. B., Tummala, Murali, McEachen, John C..  2019.  High-Throughput Covert Channels in Adaptive Rate Wireless Communication Systems. 2019 International Conference on Electronics, Information, and Communication (ICEIC). :1—7.

In this paper, we outline a novel, forward error correction-based information hiding technique for adaptive rate wireless communication systems. Specifically, we propose leveraging the functionality of wireless local area network modulation and coding schemes (MCS) and link adaptation mechanisms to significantly increase covert channel throughput. After describing our generalized information hiding model, we detail implementation of this technique within the IEEE 802.11ad, directional multi-Gigabit standard. Simulation results demonstrate the potential of the proposed techniques to develop reliable, high-throughput covert channels under multiple MCS rates and embedding techniques. Covert channel performance is evaluated in terms of the observed packet error ratio of the underlying communication system as well as the bit error ratio of the hidden data.

2020-07-03
Ceška, Milan, Havlena, Vojtech, Holík, Lukáš, Korenek, Jan, Lengál, Ondrej, Matoušek, Denis, Matoušek, Jirí, Semric, Jakub, Vojnar, Tomáš.  2019.  Deep Packet Inspection in FPGAs via Approximate Nondeterministic Automata. 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :109—117.

Deep packet inspection via regular expression (RE) matching is a crucial task of network intrusion detection systems (IDSes), which secure Internet connection against attacks and suspicious network traffic. Monitoring high-speed computer networks (100 Gbps and faster) in a single-box solution demands that the RE matching, traditionally based on finite automata (FAs), is accelerated in hardware. In this paper, we describe a novel FPGA architecture for RE matching that is able to process network traffic beyond 100 Gbps. The key idea is to reduce the required FPGA resources by leveraging approximate nondeterministic FAs (NFAs). The NFAs are compiled into a multi-stage architecture starting with the least precise stage with a high throughput and ending with the most precise stage with a low throughput. To obtain the reduced NFAs, we propose new approximate reduction techniques that take into account the profile of the network traffic. Our experiments showed that using our approach, we were able to perform matching of large sets of REs from SNORT, a popular IDS, on unprecedented network speeds.

2020-06-26
Samir, Nagham, Gamal, Yousef, El-Zeiny, Ahmed N., Mahmoud, Omar, Shawky, Ahmed, Saeed, AbdelRahman, Mostafa, Hassan.  2019.  Energy-Adaptive Lightweight Hardware Security Module using Partial Dynamic Reconfiguration for Energy Limited Internet of Things Applications. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1—4.
Data security is the main challenge in Internet of Things (IoT) applications. Security strength and the immunity to security attacks depend mainly on the available power budget. The power-security level trade-off is the main challenge for low power IoT applications, especially, energy limited IoT applications. In this paper, multiple encryption modes that provide different power consumption and security level values are hardware implemented. In other words, some modes provide high security levels at the expense of high power consumption and other modes provide low power consumption with low security level. Dynamic Partial Reconfiguration (DPR) is utilized to adaptively configure the hardware security module based on the available power budget. For example, for a given power constraint, the DPR controller configures the security module with the security mode that meets the available power constraint. ZC702 evaluation board is utilized to implement the proposed encryption modes using DPR. A Lightweight Authenticated Cipher (ACORN) is the most suitable encryption mode for low power IoT applications as it consumes the minimum power and area among the selected candidates at the expense of low throughput. The whole DPR system is tested with a maximum dynamic power dissipation of 10.08 mW. The suggested DPR system saves about 59.9% of the utilized LUTs compared to the individual implementation of the selected encryption modes.
2020-06-12
Zhang, Suman, Qin, Cai, Wang, Chaowei, Wang, Weidong, Zhang, Yinghai.  2018.  Slot Assignment Algorithm Based on Hash Function for Multi-target RFID System. 2018 IEEE/CIC International Conference on Communications in China (ICCC). :583—587.

Multi-tag identification technique has been applied widely in the RFID system to increase flexibility of the system. However, it also brings serious tags collision issues, which demands the efficient anti-collision schemes. In this paper, we propose a Multi-target tags assignment slots algorithm based on Hash function (MTSH) for efficient multi-tag identification. The proposed algorithm can estimate the number of tags and dynamically adjust the frame length. Specifically, according to the number of tags, the proposed algorithm is composed of two cases. when the number of tags is small, a hash function is constructed to map the tags into corresponding slots. When the number of tags is large, the tags are grouped and randomly mapped into slots. During the tag identification, tags will be paired with a certain matching rate and then some tags will exit to improve the efficiency of the system. The simulation results indicate that the proposed algorithm outperforms the traditional anti-collision algorithms in terms of the system throughput, stability and identification efficiency.

2020-05-26
Hamamreh, Rushdi A., Ayyad, Mohammad, Jamoos, Mohammad.  2019.  RAD: Reinforcement Authentication DYMO Protocol for MANET. 2019 International Conference on Promising Electronic Technologies (ICPET). :136–141.
Mobile ad hoc network (MANET) does not have fixed infrastructure centralized server which manage the connections between the nodes. Rather, the nodes in MANET move randomly. Thus, it is risky to exchange data between nodes because there is a high possibility of having malicious node in the path. In this paper, we will describe a new authentication technique using message digest 5 (MD5), hashing for dynamic MANET on demand protocol (DYMO) based on reinforcement learning. In addition, we will describe an encryption technique that can be used without the need for a third party to distribute a secret key. After implementing the suggested model, results showed a remarkable enhancement in securing the path by increasing the packet delivery ratio and average throughput. On the other hand, there was an increase in end to end delay due to time spent in cryptographic operations.
Tripathi, Shripriya.  2019.  Performance Analysis of AODV and DSR Routing Protocols of MANET under Wormhole Attack and a Suggested Trust Based Routing Algorithm for DSR. 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :1–5.

The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.

V S, Deepthi, S, Vagdevi.  2018.  Behaviour Analysis and Detection of Blackhole Attacker Node under Reactive Routing Protocol in MANETs. 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS). :1–5.
Mobile Adhoc networks are wireless adhoc networks that have property of self organizing, less infrastructure, multi hoping, which are designed to work under low power vulnerable environment. Due to its very unique characteristics, there is much chances of threat of malicious nodes within the network. Blackhole attack is a menace in MANETs which redirects all traffic to itself and drops it. This paper’s objective is to analyze the effects of blackhole attack under reactive routing protocol such as Adhoc on Demand Distance Vector routing (AODV). The performance of this protocol is assessed to find the vulnerability of attack and also compared the impact of attack on both AODV, AODV with blackhole and proposed AODV protocols. The analysis is done by simulated using NS- 2.35 and QoS parameters such as Throughput, PDR, and Average Energy Consumed are measured further.
Kumari, Alpana, Krishnan, Shoba.  2018.  Simulation Based Study of Blackhole Attack Under AODV Protocol. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–6.
Mobile adhoc network are fully autonomous where the nodes act both as node as well as router. Centralization is absent in MANETs. In MANETs nodes are continuously moving and have an open access which put it at a risk of large number of attacks. Security in such networks is therefore a critical matter. In order to find solution to this issue various attacks need to be studied and analyzed. In Blackhole attack, the unauthorized node in the path of source and target nodes takes away the packets sent by the source and drops them by not heading them towards the target node. The malicious behavior launched by Blackhole attack deteriorates the network performance.
Li, Guoquan, Yan, Zheng, Fu, Yulong.  2018.  A Study and Simulation Research of Blackhole Attack on Mobile AdHoc Network. 2018 IEEE Conference on Communications and Network Security (CNS). :1–6.
Mobile ad hoc network (MANET) is a kind of mobile multi-hop network which can transmit data through intermediate nodes, it has been widely used and become important since the growing of the market of Internet of Things (IoT). However, the transmissions on MANET are vulnerable, it usually suffered with many internal or external attacks, and the research on security topics of MANET are becoming more and more hot recently. Blackhole Attack is one of the most famous attacks to MANET. In this paper, we focus on the Blackhole Attack in AODV protocol, and use NS-3 network simulator to study the impact of Blackhole Attack on network performance parameters, such as the Throughput, End-to-End Delay and Packet Loss Rate. We further analyze the changes in network performance by adjusting the number of blackhole nodes and total nodes, and the movement speed of mobile nodes. The experimental results not only reflect the behaviors of the Blackhole Attack and its damage to the network, but also provide the characteristics of Blackhole Attacks clearly. This is helpful to the research of Blackhole Attack feature extraction and MANET security measurement.
2020-05-15
Biswas, Arnab Kumar.  2018.  Efficient Timing Channel Protection for Hybrid (Packet/Circuit-Switched) Network-on-Chip. IEEE Transactions on Parallel and Distributed Systems. 29:1044—1057.
Continuous development of Network-on-Chip (NoC) enables different types of applications to run efficiently in a Multiprocessor System-on-Chip (MP-SoC). Guaranteed service (GS) can be provided by circuit switching NoC and Best effort service (BES) can be provided by packet switching NoC. A hybrid NoC containing both packet and circuit switching, can provide both types of services to these different applications. But these different applications can be of different security levels and one application can interfere another application's timing characteristics during network transmission. Using this interference, a malicious application can extract secret information from higher security level flows (timing side channel) or two applications can communicate covertly violating the system's security policy (covert timing channel). We propose different mechanisms to protect hybrid routers from timing channel attacks. For design space exploration, we propose three timing channel secure hybrid routers viz. Separate Hybrid (SH), Combined with Separate interface Hybrid (CSH), and Combined Hybrid (CH) routers. Simulation results show that all three routers are secure from timing channel when compared to a conventional hybrid router. Synthesis results show that the area increments compared to a conventional hybrid router are only 7.63, 11.8, and 19.69 percent for SH, CSH, and CH routers respectively. Thus simulation and synthesis results prove the effectiveness of our proposed mechanisms with acceptable area overheads.
2020-04-06
Naves, Raphael, Jakllari, Gentian, Khalife, Hicham, Conant, Vania, Beylot, Andre-Luc.  2018.  When Analog Meets Digital: Source-Encoded Physical-Layer Network Coding. 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :1–9.
We revisit Physical-Layer Network Coding (PLNC) and the reasons preventing it from becoming a staple in wireless networks. We identify its strong coupling to the Two-Way Relay Channel (TWRC) as key among them due to its requiring crossing traffic flows and two-hop node coordination. We introduce SE-PLNC, a Source-Encoded PLNC scheme that is traffic pattern independent and involves coordination only among one-hop neighbors, making it significantly more practical to adopt PLNC in multi-hop wireless networks. To accomplish this, SE-PLNC introduces three innovations: it combines bit-level with physical-level network coding, it shifts most of the coding burden from the relay to the source of the PLNC scheme, and it leverages multi-path relaying opportunities available to a particular traffic flow. We evaluate SE-PLNC using theoretical analysis, proof-of-concept implementation on a Universal Software Radio Peripherals (USRP) testbed, and simulations. The theoretical analysis shows the scalability of SE-PLNC and its efficiency in large ad-hoc networks while the testbed experiments its real-life feasibility. Large-scale simulations show that TWRC PLNC barely boosts network throughput while SE-PLNC improves it by over 30%.
2020-03-30
Kim, Sejin, Oh, Jisun, Kim, Yoonhee.  2019.  Data Provenance for Experiment Management of Scientific Applications on GPU. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
Graphics Processing Units (GPUs) are getting popularly utilized for multi-purpose applications in order to enhance highly performed parallelism of computation. As memory virtualization methods in GPU nodes are not efficiently provided to deal with diverse memory usage patterns for these applications, the success of their execution depends on exclusive and limited use of physical memory in GPU environments. Therefore, it is important to predict a pattern change of GPU memory usage during runtime execution of an application. Data provenance extracted from application characteristics, GPU runtime environments, input, and execution patterns from runtime monitoring, is defined for supporting application management to set runtime configuration and predict an experimental result, and utilize resource with co-located applications. In this paper, we define data provenance of an application on GPUs and manage data by profiling the execution of CUDA scientific applications. Data provenance management helps to predict execution patterns of other similar experiments and plan efficient resource configuration.
2020-03-16
Kholidy, Hisham A..  2019.  Towards A Scalable Symmetric Key Cryptographic Scheme: Performance Evaluation and Security Analysis. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
In most applications, security attributes are pretty difficult to meet but it becomes even a bigger challenge when talking about Grid Computing. To secure data passes in Grid Systems, we need a professional scheme that does not affect the overall performance of the grid system. Therefore, we previously developed a new security scheme “ULTRA GRIDSEC” that is used to accelerate the performance of the symmetric key encryption algorithms for both stream and block cipher encryption algorithms. The scheme is used to accelerate the security of data pass between elements of our newly developed pure peer-to-peer desktop grid framework, “HIMAN”. It also enhances the security of the encrypted data resulted from the scheme and prevents the problem of weak keys of the encryption algorithms. This paper covers the analysis and evaluation of this scheme showing the different factors affecting the scheme performance, and covers the efficiency of the scheme from the security prospective. The experimental results are highlighted for two types of encryption algorithms, TDES as an example for the block cipher algorithms, and RC4 as an example for the stream cipher algorithms. The scheme speeds up the former algorithm by 202.12% and the latter one by 439.7%. These accelerations are also based on the running machine's capabilities.
2020-02-18
Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2019.  Fast and Efficient Web Caching Methods Regarding the Size and Performance Measures per Data Object. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–7.

Caching methods are developed since 50 years for paging in CPU and database systems, and since 25 years for web caching as main application areas among others. Pages of unique size are usual in CPU caches, whereas web caches are storing data chunks of different size in a widely varying range. We study the impact of different object sizes on the performance and the overhead of web caching. This entails different caching goals, starting from the byte and object hit ratio to a generalized value hit ratio for optimized costs and benefits of caching regarding traffic engineering (TE), reduced delays and other QoS measures. The selection of the cache contents turns out to be crucial for the web cache efficiency with awareness of the size and other properties in a score for each object. We introduce a new class of rank exchange caching methods and show how their performance compares to other strategies with extensions needed to include the size and scores for QoS and TE caching goals. Finally, we derive bounds on the object, byte and value hit ratio for the independent request model (IRM) based on optimum knapsack solutions of the cache content.