Visible to the public Biblio

Filters: Keyword is Proposals  [Clear All Filters]
2020-08-24
Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
Cuzzocrea, Alfredo, Damiani, Ernesto.  2019.  Making the Pedigree to Your Big Data Repository: Innovative Methods, Solutions, and Algorithms for Supporting Big Data Privacy in Distributed Settings via Data-Driven Paradigms. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:508–516.
Starting from our previous research where we in- troduced a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings, in this paper we further and significantly extend our past research contributions, and provide several novel contributions that complement our previous work in the investigated research field. Our proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the “pedigree” of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so- called Data-dRIven aggregate-PROvenance privacy-preserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest. Extensions and discussion on main motivations and principles of our proposed research, two relevant case studies that clearly state the need-for and covered (related) properties of supporting privacy- preserving management and analytics of big data in modern distributed systems, and an experimental assessment and analysis of our proposed DRIPROM framework are the major results of this paper.
2020-07-03
Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.

Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.

2020-05-11
Kinkelin, Holger, Hauner, Valentin, Niedermayer, Heiko, Carle, Georg.  2018.  Trustworthy configuration management for networked devices using distributed ledgers. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–5.
Numerous IoT applications, like building automation or process control of industrial sites, exist today. These applications inherently have a strong connection to the physical world. Hence, IT security threats cannot only cause problems like data leaks but also safety issues which might harm people. Attacks on IT systems are not only performed by outside attackers but also insiders like administrators. For this reason, we present ongoing work on a Byzantine fault tolerant configuration management system (CMS) that provides control over administrators, restrains their rights, and enforces separation of concerns. We reach this goal by conducting a configuration management process that requires multi-party authorization for critical configurations to prevent individual malicious administrators from performing undesired actions. Only after a configuration has been authorized by multiple experts, it is applied to the targeted devices. For the whole configuration management process, our CMS guarantees accountability and traceability. Lastly, our system is tamper-resistant as we leverage Hyperledger Fabric, which provides a distributed execution environment for our CMS and a blockchain-based distributed ledger that we use to store the configurations. A beneficial side effect of this approach is that our CMS is also suitable to manage configurations for infrastructure shared across different organizations that do not need to trust each other.
2020-04-13
Nalamati, Mrunalini, Kapoor, Ankit, Saqib, Muhammed, Sharma, Nabin, Blumenstein, Michael.  2019.  Drone Detection in Long-Range Surveillance Videos. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

The usage of small drones/UAVs has significantly increased recently. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. The similarity in the appearance of small drone and birds in complex background makes it challenging to detect drones in surveillance videos. This paper addresses the challenge of detecting small drones in surveillance videos using popular and advanced deep learning-based object detection methods. Different CNN-based architectures such as ResNet-101 and Inception with Faster-RCNN, as well as Single Shot Detector (SSD) model was used for experiments. Due to sparse data available for experiments, pre-trained models were used while training the CNNs using transfer learning. Best results were obtained from experiments using Faster-RCNN with the base architecture of ResNet-101. Experimental analysis on different CNN architectures is presented in the paper, along with the visual analysis of the test dataset.

2020-04-06
Hu, Xiaoyan, Zheng, Shaoqi, Zhao, Lixia, Cheng, Guang, Gong, Jian.  2019.  Exploration and Exploitation of Off-path Cached Content in Network Coding Enabled Named Data Networking. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1—6.

Named Data Networking (NDN) intrinsically supports in-network caching and multipath forwarding. The two salient features offer the potential to simultaneously transmit content segments that comprise the requested content from original content publishers and in-network caches. However, due to the complexity of maintaining the reachability information of off-path cached content at the fine-grained packet level of granularity, the multipath forwarding and off-path cached copies are significantly underutilized in NDN so far. Network coding enabled NDN, referred to as NC-NDN, was proposed to effectively utilize multiple on-path routes to transmit content, but off-path cached copies are still unexploited. This work enhances NC-NDN with an On-demand Off-path Cache Exploration based Multipath Forwarding strategy, dubbed as O2CEMF, to take full advantage of the multipath forwarding to efficiently utilize off-path cached content. In O2CEMF, each network node reactively explores the reachability information of nearby off-path cached content when consumers begin to request a generation of content, and maintains the reachability at the coarse-grained generation level of granularity instead. Then the consumers simultaneously retrieve content from the original content publisher(s) and the explored capable off-path caches. Our experimental studies validate that this strategy improves the content delivery performance efficiently as compared to that in the present NC-NDN.

Chin, Paul, Cao, Yuan, Zhao, Xiaojin, Zhang, Leilei, Zhang, Fan.  2019.  Locking Secret Data in the Vault Leveraging Fuzzy PUFs. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.

Physical Unclonable Functions (PUFs) are considered as an attractive low-cost security anchor. The unique features of PUFs are dependent on the Nanoscale variations introduced during the manufacturing variations. Most PUFs exhibit an unreliability problem due to aging and inherent sensitivity to the environmental conditions. As a remedy to the reliability issue, helper data algorithms are used in practice. A helper data algorithm generates and stores the helper data in the enrollment phase in a secure environment. The generated helper data are used then for error correction, which can transform the unique feature of PUFs into a reproducible key. The key can be used to encrypt secret data in the security scheme. In contrast, this work shows that the fuzzy PUFs can be used to secret important data directly by an error-tolerant protocol without the enrollment phase and error-correction algorithm. In our proposal, the secret data is locked in a vault leveraging the unique fuzzy pattern of PUF. Although the noise exists, the data can then be released only by this unique PUF. The evaluation was performed on the most prominent intrinsic PUF - DRAM PUF. The test results demonstrate that our proposal can reach an acceptable reconstruction rate in various environment. Finally, the security analysis of the new proposal is discussed.

2020-04-03
Werner, Jorge, Westphall, Carla Merkle, Vargas, André Azevedo, Westphall, Carlos Becker.  2019.  Privacy Policies Model in Access Control. 2019 IEEE International Systems Conference (SysCon). :1—8.
With the increasing advancement of services on the Internet, due to the strengthening of cloud computing, the exchange of data between providers and users is intense. Management of access control and applications need data to identify users and/or perform services in an automated and more practical way. Applications have to protect access to data collected. However, users often provide data in cloud environments and do not know what was collected, how or by whom data will be used. Privacy of personal data has been a challenge for information security. This paper presents the development and use of a privacy policy strategy, i. e., it was proposed a privacy policy model and format to be integrated with the authorization task. An access control language and the preferences defined by the owner of information were used to implement the proposals. The results showed that the strategy is feasible, guaranteeing to the users the right over their data.
2020-03-09
Flores, Denys A., Jhumka, Arshad.  2019.  Hybrid Logical Clocks for Database Forensics: Filling the Gap between Chain of Custody and Database Auditing. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :224–231.
Database audit records are important for investigating suspicious actions against transactional databases. Their admissibility as digital evidence depends on satisfying Chain of Custody (CoC) properties during their generation, collection and preservation in order to prevent their modification, guarantee action accountability, and allow third-party verification. However, their production has relied on auditing capabilities provided by commercial database systems which may not be effective if malicious users (or insiders) misuse their privileges to disable audit controls, and compromise their admissibility. Hence, in this paper, we propose a forensically-aware distributed database architecture that implements CoC properties as functional requirements to produce admissible audit records. The novelty of our proposal is the use of hybrid logical clocks, which compared with a previous centralised vector-clock architecture, has evident advantages as it (i) allows for more accurate provenance and causality tracking of insider actions, (ii) is more scalable in terms of system size, and (iii) although latency is higher (as expected in distributed environments), 70 per cent of user transactions are executed within acceptable latency intervals.
2020-02-10
Carneiro, Lucas R., Delgado, Carla A.D.M., da Silva, João C.P..  2019.  Social Analysis of Game Agents: How Trust and Reputation can Improve Player Experience. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :485–490.
Video games normally use Artificial Intelligence techniques to improve Non-Player Character (NPC) behavior, creating a more realistic experience for their players. However, rational behavior in general does not consider social interactions between player and bots. Because of that, a new framework for NPCs was proposed, which uses a social bias to mix the default strategy of finding the best possible plays to win with a analysis to decide if other players should be categorized as allies or foes. Trust and reputation models were used together to implement this demeanor. In this paper we discuss an implementation of this framework inside the game Settlers of Catan. New NPC agents are created to this implementation. We also analyze the results obtained from simulations among agents and players to conclude how the use of trust and reputation in NPCs can create a better gaming experience.
2020-01-20
Ren, Zhengwei, Zha, Xianye, Zhang, Kai, Liu, Jing, Zhao, Heng.  2019.  Lightweight Protection of User Identity Privacy Based on Zero-knowledge Proof. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2549–2554.
A number of solutions have been proposed to tackle the user privacy-preserving issue. Most of existing schemes, however, focus on methodology and techniques from the perspective of data processing. In this paper, we propose a lightweight privacy-preserving scheme for user identity from the perspective of data user and applied cryptography. The basic idea is to break the association relationships between User identity and his behaviors and ensure that User can access data or services as usual while the real identity will not be revealed. To this end, an interactive zero-knowledge proof protocol of identity is executed between CSP and User. Besides, a trusted third-party is introduced to manage user information, help CSP to validate User identity and establish secure channel between CSP and User via random shared key. After passing identity validation, User can log into cloud platform as usual without changing existing business process using random temporary account and password generated by CSP and sent to User by the secure channel which can further obscure the association relationships between identity and behaviors. Formal security analysis and theoretic and experimental evaluations are conducted, showing that the proposal is efficient and practical.
2020-01-13
Potrino, Giuseppe, de Rango, Floriano, Santamaria, Amilcare Francesco.  2019.  Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
2019-12-16
Park, Chan Mi, Lee, Jung Yeon, Baek, Hyoung Woo, Lee, Hae-Sung, Lee, JeeHang, Kim, Jinwoo.  2019.  Lifespan Design of Conversational Agent with Growth and Regression Metaphor for the Natural Supervision on Robot Intelligence. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :646–647.
Human's direct supervision on robot's erroneous behavior is crucial to enhance a robot intelligence for a `flawless' human-robot interaction. Motivating humans to engage more actively for this purpose is however difficult. To alleviate such strain, this research proposes a novel approach, a growth and regression metaphoric interaction design inspired from human's communicative, intellectual, social competence aspect of developmental stages. We implemented the interaction design principle unto a conversational agent combined with a set of synthetic sensors. Within this context, we aim to show that the agent successfully encourages the online labeling activity in response to the faulty behavior of robots as a supervision process. The field study is going to be conducted to evaluate the efficacy of our proposal by measuring the annotation performance of real-time activity events in the wild. We expect to provide a more effective and practical means to supervise robot by real-time data labeling process for long-term usage in the human-robot interaction.
2019-11-25
Pei, Xin, Li, Xuefeng, Wu, Xiaochuan, Zheng, Kaiyan, Zhu, Boheng, Cao, Yixin.  2019.  Assured Delegation on Data Storage and Computation via Blockchain System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0055–0061.

With the widespread of cloud computing, the delegation of storage and computing is becoming a popular trend. Concerns on data integrity, security, user privacy as well as the correctness of execution are highlighted due to the untrusted remote data manipulation. Most of existing proposals solve the integrity checking and verifiable computation problems by challenge-response model, but are lack of scalability and reusability. Via blockchain, we achieve efficient and transparent public verifiable delegation for both storage and computing. Meanwhile, the smart contract provides API for request handling and secure data query. The security and privacy issues of data opening are settled by applying cryptographic algorithms all through the delegations. Additionally, any access to the outsourced data requires the owner's authentication, so that the dat transference and utilization are under control.

2019-09-09
Dholey, M. K., Saha, M. K..  2018.  A Security Mechanism in DSR Routing for MANET. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :921-925.

Mobile Ad-hoc Network (MANET) is an autonomous collection of mobile nodes and communicate among them in their radio range. It is an infrastructure less, bandwidth constraint multi-hop wireless network. A various routing protocol is being evolved for MANET routing and also provide security mechanism to avoid security threads. Dynamic Source Routing (DSR), one of the popular reactive routing protocols for MANET, establishes path between source to destination before data communication take place using route request (RREQ) and route reply (RREP) control messages. Although in [1] authors propose to prevent route diversion due to a malicious node in the network using group Diffie-Hellman (GDH) key management applied over source address, but if any intermediate trusted node start to misbehave then there is no prevention mechanism. Here in this paper, we applied Hash function scheme over destination address to identify the misbehaving intermediate node that can provide wrong destination address. The path information towards the destination sent by the intermediate node through RREP is exactly for the intended required destination or not, here we can identified according to our proposed algorithm and pretend for further data transmission. Our proposed algorithm proves the authenticity of the destination and also prevent from misbehaving intermediate nodes.

2019-07-01
Rosa, F. De Franco, Jino, M., Bueno, P. Marcos Siqueira, Bonacin, R..  2018.  Coverage-Based Heuristics for Selecting Assessment Items from Security Standards: A Core Set Proposal. 2018 Workshop on Metrology for Industry 4.0 and IoT. :192-197.

In the realm of Internet of Things (IoT), information security is a critical issue. Security standards, including their assessment items, are essential instruments in the evaluation of systems security. However, a key question remains open: ``Which test cases are most effective for security assessment?'' To create security assessment designs with suitable assessment items, we need to know the security properties and assessment dimensions covered by a standard. We propose an approach for selecting and analyzing security assessment items; its foundations come from a set of assessment heuristics and it aims to increase the coverage of assessment dimensions and security characteristics in assessment designs. The main contribution of this paper is the definition of a core set of security assessment heuristics. We systematize the security assessment process by means of a conceptual formalization of the security assessment area. Our approach can be applied to security standards to select or to prioritize assessment items with respect to 11 security properties and 6 assessment dimensions. The approach is flexible allowing the inclusion of dimensions and properties. Our proposal was applied to a well know security standard (ISO/IEC 27001) and its assessment items were analyzed. The proposal is meant to support: (i) the generation of high-coverage assessment designs, which include security assessment items with assured coverage of the main security characteristics, and (ii) evaluation of security standards with respect to the coverage of security aspects.

2019-05-01
Li, X., Kodera, Y., Uetake, Y., Kusaka, T., Nogami, Y..  2018.  A Consideration of an Efficient Arithmetic Over the Extension Field of Degree 3 for Elliptic Curve Pairing Cryptography. 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1–2.

This paper presents an efficient arithmetic in extension field based on Cyclic Vector Multiplication Algorithm that reduces calculation costs over cubic extension for elliptic curve pairing cryptography. In addition, we evaluate the calculation costs compared to Karatsuba-based method.

2019-03-06
Cuzzocrea, A., Damiani, E..  2018.  Pedigree-Ing Your Big Data: Data-Driven Big Data Privacy in Distributed Environments. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :675-681.
This paper introduces a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings. The proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the "pedigree" of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so-called Data-dRIven aggregate-PROvenance privacypreserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest.
2019-02-14
Facon, A., Guilley, S., Lec'Hvien, M., Schaub, A., Souissi, Y..  2018.  Detecting Cache-Timing Vulnerabilities in Post-Quantum Cryptography Algorithms. 2018 IEEE 3rd International Verification and Security Workshop (IVSW). :7-12.

When implemented on real systems, cryptographic algorithms are vulnerable to attacks observing their execution behavior, such as cache-timing attacks. Designing protected implementations must be done with knowledge and validation tools as early as possible in the development cycle. In this article we propose a methodology to assess the robustness of the candidates for the NIST post-quantum standardization project to cache-timing attacks. To this end we have developed a dedicated vulnerability research tool. It performs a static analysis with tainting propagation of sensitive variables across the source code and detects leakage patterns. We use it to assess the security of the NIST post-quantum cryptography project submissions. Our results show that more than 80% of the analyzed implementations have at least one potential flaw, and three submissions total more than 1000 reported flaws each. Finally, this comprehensive study of the competitors security allows us to identify the most frequent weaknesses amongst candidates and how they might be fixed.

2018-06-11
Kaaniche, N., Laurent, M..  2017.  A blockchain-based data usage auditing architecture with enhanced privacy and availability. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–5.

Recent years have witnessed the trend of increasingly relying on distributed infrastructures. This increased the number of reported incidents of security breaches compromising users' privacy, where third parties massively collect, process and manage users' personal data. Towards these security and privacy challenges, we combine hierarchical identity based cryptographic mechanisms with emerging blockchain infrastructures and propose a blockchain-based data usage auditing architecture ensuring availability and accountability in a privacy-preserving fashion. Our approach relies on the use of auditable contracts deployed in blockchain infrastructures. Thus, it offers transparent and controlled data access, sharing and processing, so that unauthorized users or untrusted servers cannot process data without client's authorization. Moreover, based on cryptographic mechanisms, our solution preserves privacy of data owners and ensures secrecy for shared data with multiple service providers. It also provides auditing authorities with tamper-proof evidences for data usage compliance.

2018-06-07
Akcay, S., Breckon, T. P..  2017.  An evaluation of region based object detection strategies within X-ray baggage security imagery. 2017 IEEE International Conference on Image Processing (ICIP). :1337–1341.

Here we explore the applicability of traditional sliding window based convolutional neural network (CNN) detection pipeline and region based object detection techniques such as Faster Region-based CNN (R-CNN) and Region-based Fully Convolutional Networks (R-FCN) on the problem of object detection in X-ray security imagery. Within this context, with limited dataset availability, we employ a transfer learning paradigm for network training tackling both single and multiple object detection problems over a number of R-CNN/R-FCN variants. The use of first-stage region proposal within the Faster RCNN and R-FCN provide superior results than traditional sliding window driven CNN (SWCNN) approach. With the use of Faster RCNN with VGG16, pretrained on the ImageNet dataset, we achieve 88.3 mAP for a six object class X-ray detection problem. The use of R-FCN with ResNet-101, yields 96.3 mAP for the two class firearm detection problem requiring 0.1 second computation per image. Overall we illustrate the comparative performance of these techniques as object localization strategies within cluttered X-ray security imagery.

2018-04-04
Nguyen-Meidine, L. T., Granger, E., Kiran, M., Blais-Morin, L. A..  2017.  A comparison of CNN-based face and head detectors for real-time video surveillance applications. 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). :1–7.

Detecting faces and heads appearing in video feeds are challenging tasks in real-world video surveillance applications due to variations in appearance, occlusions and complex backgrounds. Recently, several CNN architectures have been proposed to increase the accuracy of detectors, although their computational complexity can be an issue, especially for realtime applications, where faces and heads must be detected live using high-resolution cameras. This paper compares the accuracy and complexity of state-of-the-art CNN architectures that are suitable for face and head detection. Single pass and region-based architectures are reviewed and compared empirically to baseline techniques according to accuracy and to time and memory complexity on images from several challenging datasets. The viability of these architectures is analyzed with real-time video surveillance applications in mind. Results suggest that, although CNN architectures can achieve a very high level of accuracy compared to traditional detectors, their computational cost can represent a limitation for many practical real-time applications.

2018-04-02
Focardi, R., Squarcina, M..  2017.  Run-Time Attack Detection in Cryptographic APIs. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :176–188.

Cryptographic APIs are often vulnerable to attacks that compromise sensitive cryptographic keys. In the literature we find many proposals for preventing or mitigating such attacks but they typically require to modify the API or to configure it in a way that might break existing applications. This makes it hard to adopt such proposals, especially because security APIs are often used in highly sensitive settings, such as financial and critical infrastructures, where systems are rarely modified and legacy applications are very common. In this paper we take a different approach. We propose an effective method to monitor existing cryptographic systems in order to detect, and possibly prevent, the leakage of sensitive cryptographic keys. The method collects logs for various devices and cryptographic services and is able to detect, offline, any leakage of sensitive keys, under the assumption that a key fingerprint is provided for each sensitive key. We define key security formally and we prove that the method is sound, complete and efficient. We also show that without key fingerprinting completeness is lost, i.e., some attacks cannot be detected. We discuss possible practical implementations and we develop a proof-of-concept log analysis tool for PKCS\#11 that is able to detect, on a significant fragment of the API, all key-management attacks from the literature.

2018-02-28
Arellanes, D., Lau, K. K..  2017.  Exogenous Connectors for Hierarchical Service Composition. 2017 IEEE 10th Conference on Service-Oriented Computing and Applications (SOCA). :125–132.

Service composition is currently done by (hierarchical) orchestration and choreography. However, these approaches do not support explicit control flow and total compositionality, which are crucial for the scalability of service-oriented systems. In this paper, we propose exogenous connectors for service composition. These connectors support both explicit control flow and total compositionality in hierarchical service composition. To validate and evaluate our proposal, we present a case study based on the popular MusicCorp.

2018-02-02
Mattos, D. M. F., Duarte, O. C. M. B., Pujolle, G..  2016.  A resilient distributed controller for software defined networking. 2016 IEEE International Conference on Communications (ICC). :1–6.

Control plane distribution on Software Defined Networking enhances security, performance and scalability of the network. In this paper, we propose an efficient architecture for distribution of controllers. The main contributions of the proposed architecture are: i) A controller distributed areas to ensure security, performance and scalability of the network; ii) A single database maintained by a designated controller to provide consistency to the control plane; iii) An optimized heuristic for locating controllers to reduce latency in the control plane; iv) A resilient mechanism of choosing the designated controller to ensure the proper functioning of the network, even when there are failures. A prototype of the proposal was implemented and the placement heuristic was analyzed in real topologies. The results show that connectivity is maintained even in failure scenarios. Finally, we show that the placement optimization reduces the average latency of controllers. Our proposed heuristic achieves a fair distribution of controllers and outperforms the network resilience of other heuristics up to two times better.