Visible to the public Biblio

Filters: Keyword is trees (mathematics)  [Clear All Filters]
2021-04-08
Zhang, T., Zhao, P..  2010.  Insider Threat Identification System Model Based on Rough Set Dimensionality Reduction. 2010 Second World Congress on Software Engineering. 2:111—114.
Insider threat makes great damage to the security of information system, traditional security methods are extremely difficult to work. Insider attack identification plays an important role in insider threat detection. Monitoring user's abnormal behavior is an effective method to detect impersonation, this method is applied to insider threat identification, to built user's behavior attribute information database based on weights changeable feedback tree augmented Bayes network, but data is massive, using the dimensionality reduction based on rough set, to establish the process information model of user's behavior attribute. Using the minimum risk Bayes decision can effectively identify the real identity of the user when user's behavior departs from the characteristic model.
Xingjie, F., Guogenp, W., ShiBIN, Z., ChenHAO.  2020.  Industrial Control System Intrusion Detection Model based on LSTM Attack Tree. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :255–260.
With the rapid development of the Industrial Internet, the network security risks faced by industrial control systems (ICSs) are becoming more and more intense. How to do a good job in the security protection of industrial control systems is extremely urgent. For traditional network security, industrial control systems have some unique characteristics, which results in traditional intrusion detection systems that cannot be directly reused on it. Aiming at the industrial control system, this paper constructs all attack paths from the hacker's perspective through the attack tree model, and uses the LSTM algorithm to identify and classify the attack behavior, and then further classify the attack event by extracting atomic actions. Finally, through the constructed attack tree model, the results are reversed and predicted. The results show that the model has a good effect on attack recognition, and can effectively analyze the hacker attack path and predict the next attack target.
2021-03-29
Dorri, A., Jurdak, R..  2020.  Tree-Chain: A Fast Lightweight Consensus Algorithm for IoT Applications. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :369–372.
Blockchain has received tremendous attention in non-monetary applications including the Internet of Things (IoT) due to its salient features including decentralization, security, auditability, and anonymity. Most conventional blockchains rely on computationally expensive validator selection and consensus algorithms, have limited throughput, and high transaction delays. In this paper, we propose tree-chain a scalable fast blockchain instantiation that introduces two levels of randomization among the validators: i) transaction level where the validator of each transaction is selected randomly based on the most significant characters of the hash function output (known as consensus code), and ii) blockchain level where validator is randomly allocated to a particular consensus code based on the hash of their public key. Tree-chain introduces parallel chain branches where each validator commits the corresponding transactions in a unique ledger.
2021-03-17
Straub, J..  2020.  Modeling Attack, Defense and Threat Trees and the Cyber Kill Chain, ATT CK and STRIDE Frameworks as Blackboard Architecture Networks. 2020 IEEE International Conference on Smart Cloud (SmartCloud). :148—153.

Multiple techniques for modeling cybersecurity attacks and defense have been developed. The use of tree- structures as well as techniques proposed by several firms (such as Lockheed Martin's Cyber Kill Chain, Microsoft's STRIDE and the MITRE ATT&CK frameworks) have all been demonstrated. These approaches model actions that can be taken to attack or stopped to secure infrastructure and other resources, at different levels of detail.This paper builds on prior work on using the Blackboard Architecture for cyberwarfare and proposes a generalized solution for modeling framework/paradigm-based attacks that go beyond the deployment of a single exploit against a single identified target. The Blackboard Architecture Cyber Command Entity attack Route (BACCER) identification system combines rules and facts that implement attack type determination and attack decision making logic with actions that implement reconnaissance techniques and attack and defense actions. BACCER's efficacy to model examples of tree-structures and other models is demonstrated herein.

Sadu, A., Stevic, M., Wirtz, N., Monti, A..  2020.  A Stochastic Assessment of Attacks based on Continuous-Time Markov Chains. 2020 6th IEEE International Energy Conference (ENERGYCon). :11—16.

With the increasing interdependence of critical infrastructures, the probability of a specific infrastructure to experience a complex cyber-physical attack is increasing. Thus it is important to analyze the risk of an attack and the dynamics of its propagation in order to design and deploy appropriate countermeasures. The attack trees, commonly adopted to this aim, have inherent shortcomings in representing interdependent, concurrent and sequential attacks. To overcome this, the work presented here proposes a stochastic methodology using Petri Nets and Continuous Time Markov Chain (CTMC) to analyze the attacks, considering the individual attack occurrence probabilities and their stochastic propagation times. A procedure to convert a basic attack tree into an equivalent CTMC is presented. The proposed method is applied in a case study to calculate the different attack propagation characteristics. The characteristics are namely, the probability of reaching the root node & sub attack nodes, the mean time to reach the root node and the mean time spent in the sub attack nodes before reaching the root node. Additionally, the method quantifies the effectiveness of specific defenses in reducing the attack risk considering the efficiency of individual defenses.

2021-02-22
Bashyam, K. G. Renga, Vadhiyar, S..  2020.  Fast Scalable Approximate Nearest Neighbor Search for High-dimensional Data. 2020 IEEE International Conference on Cluster Computing (CLUSTER). :294–302.
K-Nearest Neighbor (k-NN) search is one of the most commonly used approaches for similarity search. It finds extensive applications in machine learning and data mining. This era of big data warrants efficiently scaling k-NN search algorithms for billion-scale datasets with high dimensionality. In this paper, we propose a solution towards this end where we use vantage point trees for partitioning the dataset across multiple processes and exploit an existing graph-based sequential approximate k-NN search algorithm called HNSW (Hierarchical Navigable Small World) for searching locally within a process. Our hybrid MPI-OpenMP solution employs techniques including exploiting MPI one-sided communication for reducing communication times and partition replication for better load balancing across processes. We demonstrate computation of k-NN for 10,000 queries in the order of seconds using our approach on 8000 cores on a dataset with billion points in an 128-dimensional space. We also show 10X speedup over a completely k-d tree-based solution for the same dataset, thus demonstrating better suitability of our solution for high dimensional datasets. Our solution shows almost linear strong scaling.
Alzakari, N., Dris, A. B., Alahmadi, S..  2020.  Randomized Least Frequently Used Cache Replacement Strategy for Named Data Networking. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
To accommodate the rapidly changing Internet requirements, Information-Centric Networking (ICN) was recently introduced as a promising architecture for the future Internet. One of the ICN primary features is `in-network caching'; due to its ability to minimize network traffic and respond faster to users' requests. Therefore, various caching algorithms have been presented that aim to enhance the network performance using different measures, such as cache hit ratio and cache hit distance. Choosing a caching strategy is critical, and an adequate replacement strategy is also required to decide which content should be dropped. Thus, in this paper, we propose a content replacement scheme for ICN, called Randomized LFU that is implemented with respect to content popularity taking the time complexity into account. We use Abilene and Tree network topologies in our simulation models. The proposed replacement achieves encouraging results in terms of the cache hit ratio, inner hit, and hit distance and it outperforms FIFO, LRU, and Random replacement strategies.
2021-02-03
He, S., Lei, D., Shuang, W., Liu, C., Gu, Z..  2020.  Network Security Analysis of Industrial Control System Based on Attack-Defense Tree. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :651—655.
In order to cope with the network attack of industrial control system, this paper proposes a quantifiable attack-defense tree model. In order to reduce the influence of subjective factors on weight calculation and the probability of attack events, the Fuzzy Analytic Hierarchy Process and the Attack-Defense Tree model are combined. First, the model provides a variety of security attributes for attack and defense leaf nodes. Secondly, combining the characteristics of leaf nodes, a fuzzy consistency matrix is constructed to calculate the security attribute weight of leaf nodes, and the probability of attack and defense leaf nodes. Then, the influence of defense node on attack behavior is analyzed. Finally, the network risk assessment of typical airport oil supply automatic control system has been undertaken as a case study using this attack-defense tree model. The result shows that this model can truly reflect the impact of defense measures on the attack behavior, and provide a reference for the network security scheme.
2020-12-02
Gliksberg, J., Capra, A., Louvet, A., García, P. J., Sohier, D..  2019.  High-Quality Fault-Resiliency in Fat-Tree Networks (Extended Abstract). 2019 IEEE Symposium on High-Performance Interconnects (HOTI). :9—12.
Coupling regular topologies with optimized routing algorithms is key in pushing the performance of interconnection networks of HPC systems. In this paper we present Dmodc, a fast deterministic routing algorithm for Parallel Generalized Fat-Trees (PGFTs) which minimizes congestion risk even under massive topology degradation caused by equipment failure. It applies a modulo-based computation of forwarding tables among switches closer to the destination, using only knowledge of subtrees for pre-modulo division. Dmodc allows complete re-routing of topologies with tens of thousands of nodes in less than a second, which greatly helps centralized fabric management react to faults with high-quality routing tables and no impact to running applications in current and future very large-scale HPC clusters. We compare Dmodc against routing algorithms available in the InfiniBand control software (OpenSM) first for routing execution time to show feasibility at scale, and then for congestion risk under degradation to demonstrate robustness. The latter comparison is done using static analysis of routing tables under random permutation (RP), shift permutation (SP) and all-to-all (A2A) traffic patterns. Results for Dmodc show A2A and RP congestion risks similar under heavy degradation as the most stable algorithms compared, and near-optimal SP congestion risk up to 1% of random degradation.
2020-10-26
Mutalemwa, Lilian C., Shin, Seokjoo.  2019.  Investigating the Influence of Routing Scheme Algorithms on the Source Location Privacy Protection and Network Lifetime. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1188–1191.
There exist numerous strategies for Source Location Privacy (SLP) routing schemes. In this study, an experimental analysis of a few routing schemes is done to investigate the influence of the routing scheme algorithms on the privacy protection level and the network lifetime performance. The analysis involved four categories of SLP routing schemes. Analysis results revealed that the algorithms used in the representative schemes for tree-based and angle-based routing schemes incur the highest influence. The tree-based algorithm stimulates the highest energy consumption with the lowest network lifetime while the angle-based algorithm does the opposite. Moreover, for the tree-based algorithm, the influence is highly dependent on the region of the network domain.
2020-10-12
Sieu, Brandon, Gavrilova, Marina.  2019.  Person Identification from Visual Aesthetics Using Gene Expression Programming. 2019 International Conference on Cyberworlds (CW). :279–286.
The last decade has witnessed an increase in online human interactions, covering all aspects of personal and professional activities. Identification of people based on their behavior rather than physical traits is a growing industry, spanning diverse spheres such as online education, e-commerce and cyber security. One prominent behavior is the expression of opinions, commonly as a reaction to images posted online. Visual aesthetic is a soft, behavioral biometric that refers to a person's sense of fondness to a certain image. Identifying individuals using their visual aesthetics as discriminatory features is an emerging domain of research. This paper introduces a new method for aesthetic feature dimensionality reduction using gene expression programming. The advantage of this method is that the resulting system is capable of using a tree-based genetic approach for feature recombination. Reducing feature dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required storage. The results obtained on a dataset of 200 Flickr users evaluating 40000 images demonstrates a 94% accuracy of identity recognition based solely on users' aesthetic preferences. This outperforms the best-known method by 13.5%.
Rudd-Orthner, Richard N M, Mihaylova, Lyudmilla.  2019.  An Algebraic Expert System with Neural Network Concepts for Cyber, Big Data and Data Migration. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1–6.

This paper describes a machine assistance approach to grading decisions for values that might be missing or need validation, using a mathematical algebraic form of an Expert System, instead of the traditional textual or logic forms and builds a neural network computational graph structure. This Experts System approach is also structured into a neural network like format of: input, hidden and output layers that provide a structured approach to the knowledge-base organization, this provides a useful abstraction for reuse for data migration applications in big data, Cyber and relational databases. The approach is further enhanced with a Bayesian probability tree approach to grade the confidences of value probabilities, instead of the traditional grading of the rule probabilities, and estimates the most probable value in light of all evidence presented. This is ground work for a Machine Learning (ML) experts system approach in a form that is closer to a Neural Network node structure.

2020-10-06
André, Étienne, Lime, Didier, Ramparison, Mathias, Stoelinga, Mariëlle.  2019.  Parametric Analyses of Attack-Fault Trees. 2019 19th International Conference on Application of Concurrency to System Design (ACSD). :33—42.

Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.

2020-08-28
Duncan, Adrian, Creese, Sadie, Goldsmith, Michael.  2019.  A Combined Attack-Tree and Kill-Chain Approach to Designing Attack-Detection Strategies for Malicious Insiders in Cloud Computing. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—9.

Attacks on cloud-computing services are becoming more prevalent with recent victims including Tesla, Aviva Insurance and SIM-card manufacturer Gemalto[1]. The risk posed to organisations from malicious insiders is becoming more widely known about and consequently many are now investing in hardware, software and new processes to try to detect these attacks. As for all types of attack vector, there will always be those which are not known about and those which are known about but remain exceptionally difficult to detect - particularly in a timely manner. We believe that insider attacks are of particular concern in a cloud-computing environment, and that cloud-service providers should enhance their ability to detect them by means of indirect detection. We propose a combined attack-tree and kill-chain based method for identifying multiple indirect detection measures. Specifically, the use of attack trees enables us to encapsulate all detection opportunities for insider attacks in cloud-service environments. Overlaying the attack tree on top of a kill chain in turn facilitates indirect detection opportunities higher-up the tree as well as allowing the provider to determine how far an attack has progressed once suspicious activity is detected. We demonstrate the method through consideration of a specific type of insider attack - that of attempting to capture virtual machines in transit within a cloud cluster via use of a network tap, however, the process discussed here applies equally to all cloud paradigms.

2020-08-13
Cheng, Chen, Xiaoli, Liu, Linfeng, Wei, Longxin, Lin, Xiaofeng, Wu.  2019.  Algorithm for k-anonymity based on ball-tree and projection area density partition. 2019 14th International Conference on Computer Science Education (ICCSE). :972—975.

K-anonymity is a popular model used in microdata publishing to protect individual privacy. This paper introduces the idea of ball tree and projection area density partition into k-anonymity algorithm.The traditional kd-tree implements the division by forming a super-rectangular, but the super-rectangular has the area angle, so it cannot guarantee that the records on the corner are most similar to the records in this area. In this paper, the super-sphere formed by the ball-tree is used to address this problem. We adopt projection area density partition to increase the density of the resulting recorded points. We implement our algorithm with the Gotrack dataset and the Adult dataset in UCI. The experimentation shows that the k-anonymity algorithm based on ball-tree and projection area density partition, obtains more anonymous groups, and the generalization rate is lower. The smaller the K is, the more obvious the result advantage is. The result indicates that our algorithm can make data usability even higher.

2020-07-06
Chai, Yadeng, Liu, Yong.  2019.  Natural Spoken Instructions Understanding for Robot with Dependency Parsing. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :866–871.
This paper presents a method based on syntactic information, which can be used for intent determination and slot filling tasks in a spoken language understanding system including the spoken instructions understanding module for robot. Some studies in recent years attempt to solve the problem of spoken language understanding via syntactic information. This research is a further extension of these approaches which is based on dependency parsing. In this model, the input for neural network are vectors generated by a dependency parsing tree, which we called window vector. This vector contains dependency features that improves performance of the syntactic-based model. The model has been evaluated on the benchmark ATIS task, and the results show that it outperforms many other syntactic-based approaches, especially in terms of slot filling, it has a performance level on par with some state of the art deep learning algorithms in recent years. Also, the model has been evaluated on FBM3, a dataset of the RoCKIn@Home competition. The overall rate of correctly understanding the instructions for robot is quite good but still not acceptable in practical use, which is caused by the small scale of FBM3.
2020-06-26
Rezaei, Aref, Farzinvash, Leili, Farzamnia, Ali.  2019.  A Novel Steganography Algorithm using Edge Detection and MPC Algorithm. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :49—54.

With the rapid development of the Internet, preserving the security of confidential data has become a challenging issue. An effective method to this end is to apply steganography techniques. In this paper, we propose an efficient steganography algorithm which applies edge detection and MPC algorithm for data concealment in digital images. The proposed edge detection scheme partitions the given image, namely cover image, into blocks. Next, it identifies the edge blocks based on the variance of their corner pixels. Embedding the confidential data in sharp edges causes less distortion in comparison to the smooth areas. To diminish the imposed distortion by data embedding in edge blocks, we employ LSB and MPC algorithms. In the proposed scheme, the blocks are split into some groups firstly. Next, a full tree is constructed per group using the LSBs of its pixels. This tree is converted into another full tree in some rounds. The resultant tree is used to modify the considered LSBs. After the accomplishment of the data embedding process, the final image, which is called stego image, is derived. According to the experimental results, the proposed algorithm improves PSNR with at least 5.4 compared to the previous schemes.

2020-06-08
Sun, Wenhua, Wang, Xiaojuan, Jin, Lei.  2019.  An Efficient Hash-Tree-Based Algorithm in Mining Sequential Patterns with Topology Constraint. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2782–2789.
Warnings happen a lot in real transmission networks. These warnings can affect people's lives. It is significant to analyze the alarm association rules in the network. Many algorithms can help solve this problem but not considering the actual physical significance. Therefore, in this study, we mine the association rules in warning weblogs based on a sequential mining algorithm (GSP) with topology structure. We define a topology constraint from network physical connection data. Under the topology constraint, network nodes have topology relation if they are directly connected or have a common adjacency node. In addition, due to the large amount of data, we implement the hash-tree search method to improve the mining efficiency. The theoretical solution is feasible and the simulation results verify our method. In simulation, the topology constraint improves the accuracy for 86%-96% and decreases the run time greatly at the same time. The hash-tree based mining results show that hash tree efficiency improvements are in 3-30% while the number of patterns remains unchanged. In conclusion, using our method can mine association rules efficiently and accurately in warning weblogs.
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2020-06-04
Gulhane, Aniket, Vyas, Akhil, Mitra, Reshmi, Oruche, Roland, Hoefer, Gabriela, Valluripally, Samaikya, Calyam, Prasad, Hoque, Khaza Anuarul.  2019.  Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1—9.

Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.

2020-05-22
Sheth, Utsav, Dutta, Sanghamitra, Chaudhari, Malhar, Jeong, Haewon, Yang, Yaoqing, Kohonen, Jukka, Roos, Teemu, Grover, Pulkit.  2018.  An Application of Storage-Optimal MatDot Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation. 2018 IEEE International Conference on Big Data (Big Data). :1113—1120.
We propose a novel application of coded computing to the problem of the nearest neighbor estimation using MatDot Codes (Fahim et al., Allerton'17) that are known to be optimal for matrix multiplication in terms of recovery threshold under storage constraints. In approximate nearest neighbor algorithms, it is common to construct efficient in-memory indexes to improve query response time. One such strategy is Multiple Random Projection Trees (MRPT), which reduces the set of candidate points over which Euclidean distance calculations are performed. However, this may result in a high memory footprint and possibly paging penalties for large or high-dimensional data. Here we propose two techniques to parallelize MRPT that exploit data and model parallelism respectively by dividing both the data storage and the computation efforts among different nodes in a distributed computing cluster. This is especially critical when a single compute node cannot hold the complete dataset in memory. We also propose a novel coded computation strategy based on MatDot codes for the model-parallel architecture that, in a straggler-prone environment, achieves the storage-optimal recovery threshold, i.e., the number of nodes that are required to serve a query. We experimentally demonstrate that, in the absence of straggling, our distributed approaches require less query time than execution on a single processing node, providing near-linear speedups with respect to the number of worker nodes. Our experiments on real systems with simulated straggling, we also show that in a straggler-prone environment, our strategy achieves a faster query execution than the uncoded strategy.
Wang, Xi, Yao, Jun, Ji, Hongxia, Zhang, Ze, Li, Chen, Ma, Beizhi.  2018.  A Local Integral Hash Nearest Neighbor Algorithm. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :544—548.

Nearest neighbor search algorithm plays a very important role in computer image algorithm. When the search data is large, we need to use fast search algorithm. The current fast retrieval algorithms are tree based algorithms. The efficiency of the tree algorithm decreases sharply with the increase of the data dimension. In this paper, a local integral hash nearest neighbor algorithm of the spatial space is proposed to construct the tree structure by changing the way of the node of the access tree. It is able to express data distribution characteristics. After experimental testing, this paper achieves more efficient performance in high dimensional data.

2020-04-03
Luo, Xueting, Lu, Yueming.  2019.  A Method of Conflict Detection for Security Policy Based on B+ Tree. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :466-472.

Security policy is widely used in network management systems to ensure network security. It is necessary to detect and resolve conflicts in security policies. This paper analyzes the shortcomings of existing security policy conflict detection methods and proposes a B+ tree-based security policy conflict detection method. First, the security policy is dimensioned to make each attribute corresponds to one dimension. Then, a layer of B+ tree index is constructed at each dimension level. Each rule will be uniquely mapped by multiple layers of nested indexes. This method can greatly improve the efficiency of conflict detection. The experimental results show that the method has very stable performance which can effectively prevent conflicts, the type of policy conflict can be detected quickly and accurately.

2020-03-09
Neureiter, Christian, Eibl, Günther, Veichtlbauer, Armin, Engel, Dominik.  2013.  Towards a Framework for Engineering Smart-Grid-Specific Privacy Requirements. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. :4803–4808.

Privacy has become a critical topic in the engineering of electric systems. This work proposes an approach for smart-grid-specific privacy requirements engineering by extending previous general privacy requirements engineering frameworks. The proposed extension goes one step further by focusing on privacy in the smart grid. An alignment of smart grid privacy requirements, dependability issues and privacy requirements engineering methods is presented. Starting from this alignment a Threat Tree Analysis is performed to obtain a first set of generic, high level privacy requirements. This set is formulated mostly on the data instead of the information level and provides the basis for further project-specific refinement.

2020-03-02
Kharchenko, Vyacheslav, Ponochovniy, Yuriy, Abdulmunem, Al-Sudani Mustafa Qahtan, Shulga, Iryna.  2019.  AvTA Based Assessment of Dependability Considering Recovery After Failures and Attacks on Vulnerabilities. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:1036–1040.

The paper describes modification of the ATA (Attack Tree Analysis) technique for assessment of instrumentation and control systems (ICS) dependability (reliability, availability and cyber security) called AvTA (Availability Tree Analysis). The techniques FMEA, FMECA and IMECA applied to carry out preliminary semi-formal and criticality oriented analysis before AvTA based assessment are described. AvTA models combine reliability and cyber security subtrees considering probabilities of ICS recovery in case of hardware (physical) and software (design) failures and attacks on components casing failures. Successful recovery events (SREs) avoid corresponding failures in tree using OR gates if probabilities of SRE for assumed time are more than required. Case for dependability AvTA based assessment (model, availability function and technology of decision-making for choice of component and system parameters) for smart building ICS (Building Automation Systems, BAS) is discussed.