Visible to the public Biblio

Filters: Keyword is trustworthiness  [Clear All Filters]
2023-03-31
Chibba, Michelle, Cavoukian, Ann.  2015.  Privacy, consumer trust and big data: Privacy by design and the 3 C'S. 2015 ITU Kaleidoscope: Trust in the Information Society (K-2015). :1–5.
The growth of ICTs and the resulting data explosion could pave the way for the surveillance of our lives and diminish our democratic freedoms, at an unimaginable scale. Consumer mistrust of an organization's ability to safeguard their data is at an all time high and this has negative implications for Big Data. The timing is right to be proactive about designing privacy into technologies, business processes and networked infrastructures. Inclusiveness of all objectives can be achieved through consultation, co-operation, and collaboration (3 C's). If privacy is the default, without diminishing functionality or other legitimate interests, then trust will be preserved and innovation will flourish.
2023-03-03
Aljawarneh, Fatin.  2022.  A Secure Smart Meter Application Framework. 2022 International Conference on Engineering & MIS (ICEMIS). :1–4.
We have proposed a new Smart Meter Application (SMA) Framework. This application registers consumers at utility provider (Electricity), takes the meter reading for electricity and makes billing. The proposed application might offer higher level of flexibility and security, time saving and trustworthiness between consumers and authority offices. It’s expected that the application will be developed by Flutter to support Android and iOS Mobile Operating Systems.
2023-01-06
Daughety, Nathan, Pendleton, Marcus, Perez, Rebeca, Xu, Shouhuai, Franco, John.  2022.  Auditing a Software-Defined Cross Domain Solution Architecture. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :96—103.
In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.
2022-08-03
Le, Van Thanh, El Ioini, Nabil, Pahl, Claus, Barzegar, Hamid R., Ardagna, Claudio.  2021.  A Distributed Trust Layer for Edge Infrastructure. 2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC). :1—8.
Recently, Mobile Edge Cloud computing (MEC) has attracted attention both from academia and industry. The idea of moving a part of cloud resources closer to users and data sources can bring many advantages in terms of speed, data traffic, security and context-aware services. The MEC infrastructure does not only host and serves applications next to the end-users, but services can be dynamically migrated and reallocated as mobile users move in order to guarantee latency and performance constraints. This specific requirement calls for the involvement and collaboration of multiple MEC providers, which raises a major issue related to trustworthiness. Two main challenges need to be addressed: i) trustworthiness needs to be handled in a manner that does not affect latency or performance, ii) trustworthiness is considered in different dimensions - not only security metrics but also performance and quality metrics in general. In this paper, we propose a trust layer for public MEC infrastructure that handles establishing and updating trust relations among all MEC entities, making the interaction withing a MEC network transparent. First, we define trust attributes affecting the trusted quality of the entire infrastructure and then a methodology with a computation model that combines these trust attribute values. Our experiments showed that the trust model allows us to reduce latency by removing the burden from a single MEC node, while at the same time increase the network trustworthiness.
Palma, Noelia Pérez, Matheu-García, Sara Nieves, Zarca, Alejandro Molina, Ortiz, Jordi, Skarmeta, Antonio.  2021.  Enhancing trust and liability assisted mechanisms for ZSM 5G architectures. 2021 IEEE 4th 5G World Forum (5GWF). :362—367.
5G improves previous generations not only in terms of radio access but the whole infrastructure and services paradigm. Automation, dynamism and orchestration are now key features that allow modifying network behaviour, such as Virtual Network Functions (VNFs), and resource allocation reactively and on demand. However, such dynamic ecosystem must pay special attention to security while ensuring that the system actions are trustworthy and reliable. To this aim, this paper introduces the integration of the Manufacturer Usage Description (MUD) standard alongside a Trust and Reputation Manager (TRM) into the INSPIRE-5GPlus framework, enforcing security properties defined by MUD files while the whole infrastructure, virtual and physical, as well as security metrics are continuously audited to compute trust and reputation values. These values are later fed to enhance trustworthiness on the zero-touch decision making such as the ones orchestrating end-to-end security in a closed-loop.
Dong, Wenyu, Yang, Bo, Wang, Ke, Yan, Junzhi, He, Shen.  2021.  A Dual Blockchain Framework to Enhance Data Trustworthiness in Digital Twin Network. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). :144—147.
Data are the basis in Digital Twin (DT) to set up bidirectional mapping between physical and virtual spaces, and realize critical environmental sensing, decision making and execution. Thus, trustworthiness is a necessity in data content as well as data operations. A dual blockchain framework is proposed to realize comprehensive data security in various DT scenarios. It is highly adaptable, scalable, evolvable, and easy to be integrated into Digital Twin Network (DTN) as enhancement.
de Biase, Maria Stella, Marulli, Fiammetta, Verde, Laura, Marrone, Stefano.  2021.  Improving Classification Trustworthiness in Random Forests. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :563—568.
Machine learning algorithms are becoming more and more widespread in industrial as well as in societal settings. This diffusion is starting to become a critical aspect of new software-intensive applications due to the need of fast reactions to changes, even if temporary, in data. This paper investigates on the improvement of reliability in the Machine Learning based classification by extending Random Forests with Bayesian Network models. Such models, combined with a mechanism able to adjust the reputation level of single learners, may improve the overall classification trustworthiness. A small example taken from the healthcare domain is presented to demonstrate the proposed approach.
Laputenko, Andrey.  2021.  Assessing Trustworthiness of IoT Applications Using Logic Circuits. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
The paper describes a methodology for assessing non-functional requirements, such as trust characteristics for applications running on computationally constrained devices in the Internet of Things. The methodology is demonstrated through an example of a microcontroller-based temperature monitoring system. The concepts of trust and trustworthiness for software and devices of the Internet of Things are complex characteristics for describing the correct and secure operation of such systems and include aspects of operational and information security, reliability, resilience and privacy. Machine learning models, which are increasingly often used for such tasks in recent years, are resource-consuming software implementations. The paper proposes to use a logic circuit model to implement the above algorithms as an additional module for computationally constrained devices for checking the trustworthiness of applications running on them. Such a module could be implemented as a hardware, for example, as an FPGA in order to achieve more effectiveness.
Nakano, Yuto, Nakamura, Toru, Kobayashi, Yasuaki, Ozu, Takashi, Ishizaka, Masahito, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Miyake, Yutaka, Kiyomoto, Shinsaku.  2021.  Automatic Security Inspection Framework for Trustworthy Supply Chain. 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA). :45—50.
Threats and risks against supply chains are increasing and a framework to add the trustworthiness of supply chain has been considered. In this framework, organisations in the supply chain validate the conformance to the pre-defined requirements. The results of validations are linked each other to achieve the trustworthiness of the entire supply chain. In this paper, we further consider this framework for data supply chains. First, we implement the framework and evaluate the performance. The evaluation shows 500 digital evidences (logs) can be checked in 0.28 second. We also propose five methods to improve the performance as well as five new functionalities to improve usability. With these functionalities, the framework also supports maintaining the certificate chain.
Gao, Xiaotong, Ma, Yanfang, Zhou, Wei.  2021.  The Trustworthiness Measurement Model of Component-based Software Based on the Subjective and Objective Weight Allocation Method. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :478—486.
Software trustworthiness includes many attributes. Reasonable weight allocation of trustworthy attributes plays a key role in the software trustworthiness measurement. In practical application, attribute weight usually comes from experts' evaluation to attributes and hidden information derived from attributes. Therefore, when the weight of attributes is researched, it is necessary to consider weight from subjective and objective aspects. Firstly, a novel weight allocation method is proposed by combining the Fuzzy Analytical Hierarchy Process (FAHP) method and the Criteria Importance Though Intercrieria Correlation (CRITIC) method. Secondly, based on the weight allocation method, the trustworthiness measurement models of component-based software are established according to the four combination structures of components. Thirdly, some metric criteria of the model are proved to verify the reasonability. Finally, a case is used to illustrate the practicality of the model.
Morio, Kevin, Künnemann, Robert.  2021.  Verifying Accountability for Unbounded Sets of Participants. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
Little can be achieved in the design of security protocols without trusting at least some participants. This trust should be justified or, at the very least, subject to examination. One way to strengthen trustworthiness is to hold parties accountable for their actions, as this provides a strong incentive to refrain from malicious behavior. This has led to an increased interest in accountability in the design of security protocols. In this work, we combine the accountability definition of Künnemann, Esiyok, and Backes [21] with the notion of case tests to extend its applicability to protocols with unbounded sets of participants. We propose a general construction of verdict functions and a set of verification conditions that achieve soundness and completeness. Expressing the verification conditions in terms of trace properties allows us to extend TAMARIN - a protocol verification tool - with the ability to analyze and verify accountability properties in a highly automated way. In contrast to prior work, our approach is significantly more flexible and applicable to a wider range of protocols.
Gao, Hongxia, Yu, Zhenhua, Cong, Xuya, Wang, Jing.  2021.  Trustworthiness Evaluation of Smart Grids Using GSPN. 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). 1:1—7.
Smart grids are one of the most important applications of cyber-physical systems. They intelligently transmit energy to customers by information technology, and have replaced the traditional power grid and are widely used. However, smart grids are vulnerable to cyber-attacks. Once attacked, it will cause great losses and lose the trust of customers. Therefore, it is important to evaluate the trustworthiness of smart grids. In order to evaluate the trustworthiness of smart grids, this paper uses a generalized stochastic Petri net (GSPN) to model smart grids. Considering various security threats that smart grids may face, we propose a general GSPN model for smart grids, which evaluates trustworthiness from three metrics of reliability, availability, and integrity by analyzing steady-state and transient probabilities. Finally, we obtain the value of system trustworthiness and simulation results show that the feasibility and effectiveness of our model for smart grids trustworthiness.
Deng, Yuxin, Chen, Zezhong, Du, Wenjie, Mao, Bifei, Liang, Zhizhang, Lin, Qiushi, Li, Jinghui.  2021.  Trustworthiness Derivation Tree: A Model of Evidence-Based Software Trustworthiness. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :487—493.
In order to analyze the trustworthiness of complex software systems, we propose a model of evidence-based software trustworthiness called trustworthiness derivation tree (TDT). The basic idea of constructing a TDT is to refine main properties into key ingredients and continue the refinement until basic facts such as evidences are reached. The skeleton of a TDT can be specified by a set of rules, which is convenient for automated reasoning in Prolog. We develop a visualization tool that can construct the skeleton of a TDT by taking the rules as input, and allow a user to edit the TDT in a graphical user interface. In a software development life cycle, TDTs can serve as a communication means for different stakeholders to agree on the properties about a system in the requirement analysis phase, and they can be used for deductive reasoning so as to verify whether the system achieves trustworthiness in the product validation phase. We have piloted the approach of using TDTs in more than a dozen real scenarios of software development. Indeed, using TDTs helped us to discover and then resolve some subtle problems.
2021-11-08
Martin, Robert Alan.  2020.  Assurance for CyberPhysical Systems: Addressing Supply Chain Challenges to Trustworthy Software-Enabled Things. 2020 IEEE Systems Security Symposium (SSS). :1–5.
Software is playing a pivotal role in most enterprises, whether they realize it or not, and with the proliferation of Industrial Internet of Things (IoT) and other CyberPhysical systems across our society and critical infrastructure and our collective love affair with automation, optimization, and ``smart'' devices, the role of these types of systems is only going to increase. This talk addresses the myriad of issues that underlie unsafe, insecure, and unreliable software and provides the insights of the Industrial Internet Consortium and other government and industry efforts on how to conquer them and pave the way to a marketplace of trustworthy software-enabled connected things. As the experience of several sectors has shown, the dependence on connected software needs to be met with a strong understanding of the risks to the overall trustworthiness of our software-based capabilities that we, our enterprises, and our world utilize. In many of these new connected systems issues of safety, reliability, and resilience rival or dominate concerns for security and privacy, the long-time focus of many in the IT world. Without a scalable and efficient method for managing these risks so our enterprises can continue to benefit from these advancements that powers our military, commercial industries, cities, and homes to new levels of efficiency, versatility, and cost effectiveness we face the potential for harm, death, and destructiveness. In such a marketplace, creating, exchanging, and integrating components that are trustworthy as well as entering into value-chain relationships with trustworthy partners and service suppliers will be common if we can provide a method for explicitly defining what is meant by the word trustworthy. The approach being pursued by these groups for applying Software Assurance to these systems and their Supply Chains by leveraging Structured Assurance Cases (the focus of this paper), Software Bill of Materials, and secure development practices applied to the evolving Agile and DevSecOps methodologies, is to explicitly identify the detailed requirements ``about what we need to know about something for it to be worthy of our trust'' and to do that in a way that we can convey that basis of trust to others that: can scale; is consistent within different workflows; is flexible to differing sets of hazards and environments; and is applicable to all sectors, domains, and industries.
2021-05-13
Suriano, Antonio, Striccoli, Domenico, Piro, Giuseppe, Bolla, Raffele, Boggia, Gennaro.  2020.  Attestation of Trusted and Reliable Service Function Chains in the ETSI-NFV Framework. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :479—486.

The new generation of digital services are natively conceived as an ordered set of Virtual Network Functions, deployed across boundaries and organizations. In this context, security threats, variable network conditions, computational and memory capabilities and software vulnerabilities may significantly weaken the whole service chain, thus making very difficult to combat the newest kinds of attacks. It is thus extremely important to conceive a flexible (and standard-compliant) framework able to attest the trustworthiness and the reliability of each single function of a Service Function Chain. At the time of this writing, and to the best of authors knowledge, the scientific literature addressed all of these problems almost separately. To bridge this gap, this paper proposes a novel methodology, properly tailored within the ETSI-NFV framework. From one side, Software-Defined Controllers continuously monitor the properties and the performance indicators taken from networking domains of each single Virtual Network Function available in the architecture. From another side, a high-level orchestrator combines, on demand, the suitable Virtual Network Functions into a Service Function Chain, based on the user requests, targeted security requirements, and measured reliability levels. The paper concludes by further explaining the functionalities of the proposed architecture through a use case.

2021-04-27
Mane, Y. D., Khot, U. P..  2020.  A Systematic Way to Implement Private Tor Network with Trusted Middle Node. 2020 International Conference for Emerging Technology (INCET). :1—6.

Initially, legitimate users were working under a normal web browser to do all activities over the internet [1]. To get more secure service and to get protection against Bot activity, the legitimate users switched their activity from Normal web browser to low latency anonymous communication such as Tor Browser. The Traffic monitoring in Tor Network is difficult as the packets are traveling from source to destination in an encrypted fashion and the Tor network hides its identity from destination. But lately, even the illegitimate users such as attackers/criminals started their activity on the Tor browser. The secured Tor network makes the detection of Botnet more difficult. The existing tools for botnet detection became inefficient against Tor-based bots because of the features of the Tor browser. As the Tor Browser is highly secure and because of the ethical issues, doing practical experiments on it is not advisable which could affect the performance and functionality of the Tor browser. It may also affect the endanger users in situations where the failure of Tor's anonymity has severe consequences. So, in the proposed research work, Private Tor Networks (PTN) on physical or virtual machines with dedicated resources have been created along with Trusted Middle Node. The motivation behind the trusted middle node is to make the Private Tor network more efficient and to increase its performance.

2020-12-21
Raza, A., Ulanskyi, V..  2020.  A General Approach to Assessing the Trustworthiness of System Condition Prognostication. 2020 IEEE Aerospace Conference. :1–8.
This paper proposes a mathematical model for assessing the trustworthiness of the system condition prognosis. The set of mutually exclusive events at the time of predictive checking are analyzed. Correct and incorrect decisions correspond to events such as true-positive, false-positive, true-negative, and false-negative. General expressions for computing the probabilities of possible decisions when predicting the system condition at discrete times are proposed. The paper introduces the effectiveness indicators of predictive maintenance in the form of average operating costs, total error probability, and a posteriori probability of failure-free operation in the upcoming interval. We illustrate the developed approach by calculating the probabilities of correct and incorrect decisions for a specific stochastic deterioration process.
Enkhtaivan, B., Inoue, A..  2020.  Mediating Data Trustworthiness by Using Trusted Hardware between IoT Devices and Blockchain. 2020 IEEE International Conference on Smart Internet of Things (SmartIoT). :314–318.
In recent years, with the progress of data analysis methods utilizing artificial intelligence (AI) technology, concepts of smart cities collecting data from IoT devices and creating values by analyzing it have been proposed. However, making sure that the data is not tampered with is of the utmost importance. One way to do this is to utilize blockchain technology to record and trace the history of the data. Park and Kim proposed ensuring the trustworthiness of the data by utilizing an IoT device with a trusted execution environment (TEE). Also, Guan et al. proposed authenticating an IoT device and mediating data using a TEE. For the authentication, they use the physically unclonable function of the IoT device. Usually, IoT devices suffer from the lack of resources necessary for creating transactions for the blockchain ledger. In this paper, we present a secure protocol in which a TEE acts as a proxy to the IoT devices and creates the necessary transactions for the blockchain. We use an authenticated encryption method on the data transmission between the IoT device and TEE to authenticate the device and ensure the integrity and confidentiality of the data generated by the IoT devices.
Liu, Q., Wu, W., Liu, Q., Huangy, Q..  2020.  T2DNS: A Third-Party DNS Service with Privacy Preservation and Trustworthiness. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–11.
We design a third-party DNS service named T2DNS. T2DNS serves client DNS queries with the following features: protecting clients from channel and server attackers, providing trustworthiness proof to clients, being compatible with the existing Internet infrastructure, and introducing bounded overhead. T2DNS's privacy preservation is achieved by a hybrid protocol of encryption and obfuscation, and its service proxy is implemented on Intel SGX. We overcome the challenges of scaling the initialization process, bounding the obfuscation overhead, and tuning practical system parameters. We prototype T2DNS, and experiment results show that T2DNS is fully functional, has acceptable overhead in comparison with other solutions, and is scalable to the number of clients.
Figueiredo, N. M., Rodríguez, M. C..  2020.  Trustworthiness in Sensor Networks A Reputation-Based Method for Weather Stations. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–6.
Trustworthiness is a soft-security feature that evaluates the correct behavior of nodes in a network. More specifically, this feature tries to answer the following question: how much should we trust in a certain node? To determine the trustworthiness of a node, our approach focuses on two reputation indicators: the self-data trust, which evaluates the data generated by the node itself taking into account its historical data; and the peer-data trust, which utilizes the nearest nodes' data. In this paper, we show how these two indicators can be calculated using the Gaussian Overlap and Pearson correlation. This paper includes a validation of our trustworthiness approach using real data from unofficial and official weather stations in Portugal. This is a representative scenario of the current situation in many other areas, with different entities providing different kinds of data using autonomous sensors in a continuous way over the networks.
Nasution, A. P., Suryani, V., Wardana, A. A..  2020.  IoT Object Security towards On-off Attack Using Trustworthiness Management. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1–6.
Internet of Things (IoT) can create the world with the integration of the physical things with the seamlessly network of information purposely to give a sophisticated and smart service for human life. A variety of threats and attacks to IoT object, however, can lead to the misuse of data or information to the IoT objects. One of the attacks is On-off Attack in which the attacker acts not only as an object with a good manner by sending the valid trust value but also sometimes as a bad object by sending invalid one. To respond this action, there is a need for the object security to such attacks. Here the writer used the Trustworthiness Management as a method to cope with this attack. Trustworthiness Management can use the aspect of trust value security as a reference for detecting an attack to the object. In addition, with the support of security system using the authentication provided by MQTT, it is expected that it can provide an additional security. The approach used in this research was the test on On-Off Attack detection directly to the object connected to the network. The results of the test were then displayed on the webpage made using PHP and MySQL database as the storage of the values sent by the object to the server. The test on the On-off Attack detection was successfully conducted with the success level of 100% and the execution to detection took 0.5518318 seconds. This then showed that Trustworthiness Management can be used as one of the methods to cope with On-off Attack.
Neises, J., Moldovan, G., Walloschke, T., Popovici, B..  2020.  Trustworthiness in Supply Chains : A modular extensible Approach applied to Industrial IoT. 2020 Global Internet of Things Summit (GIoTS). :1–6.
Typical transactions in cross-company Industry 4.0 supply chains require a dynamically evaluable form of trustworthiness. Therefore, specific requirements on the parties involved, down to the machine level, for automatically verifiable operations shall facilitate the realization of the economic advantages of future flexible process chains in production. The core of the paper is a modular and extensible model for the assessment of trustworthiness in industrial IoT based on the Industrial Internet Security Framework of the Industrial Internet Consortium, which among other things defines five trustworthiness key characteristics of NIST. This is the starting point for a flexible model, which contains features as discussed in ISO/IEC JTC 1/AG 7 N51 or trustworthiness profiles as used in regulatory requirements. Specific minimum and maximum requirement parameters define the range of trustworthy operation. An automated calculation of trustworthiness in a dynamic environment based on an initial trust metric is presented. The evaluation can be device-based, connection-based, behaviour-based and context-based and thus become part of measurable, trustworthy, monitorable Industry 4.0 scenarios. Finally, the dynamic evaluation of automatable trust models of industrial components is illustrated based on the Multi-Vendor-Industry of the Horizon 2020 project SecureIoT. (grant agreement number 779899).
Jithish, J., Sankaran, S., Achuthan, K..  2020.  Towards Ensuring Trustworthiness in Cyber-Physical Systems: A Game-Theoretic Approach. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :626–629.

The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.

Cheng, Z., Chow, M.-Y..  2020.  An Augmented Bayesian Reputation Metric for Trustworthiness Evaluation in Consensus-based Distributed Microgrid Energy Management Systems with Energy Storage. 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). 1:215–220.
Consensus-based distributed microgrid energy management system is one of the most used distributed control strategies in the microgrid area. To improve its cybersecurity, the system needs to evaluate the trustworthiness of the participating agents in addition to the conventional cryptography efforts. This paper proposes a novel augmented reputation metric to evaluate the agents' trustworthiness in a distributed fashion. The proposed metric adopts a novel augmentation method to substantially improve the trust evaluation and attack detection performance under three typical difficult-to-detect attack patterns. The proposed metric is implemented and validated on a real-time HIL microgrid testbed.
Huang, H., Zhou, S., Lin, J., Zhang, K., Guo, S..  2020.  Bridge the Trustworthiness Gap amongst Multiple Domains: A Practical Blockchain-based Approach. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
In isolated network domains, global trustworthiness (e.g., consistent network view) is critical to the multiple-domain business partners who aim to perform the trusted corporations depending on each isolated network view. However, to achieve such global trustworthiness across distributed network domains is a challenge. This is because when multiple-domain partners are required to exchange their local domain views with each other, it is difficult to ensure the data trustworthiness among them. In addition, the isolated domain view in each partner is prone to be destroyed by malicious falsification attacks. To this end, we propose a blockchain-based approach that can ensure the trustworthiness among multiple-party domains. In this paper, we mainly present the design and implementation of the proposed trustworthiness-protection system. A cloud-based prototype and a local testbed are developed based on Ethereum. Finally, experimental results demonstrate the effectiveness of the proposed prototype and testbed.