Biblio
Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.
A wide variety of security software systems need to be integrated into a Security Orchestration Platform (SecOrP) to streamline the processes of defending against and responding to cybersecurity attacks. Lack of interpretability and interoperability among security systems are considered the key challenges to fully leverage the potential of the collective capabilities of different security systems. The processes of integrating security systems are repetitive, time-consuming and error-prone; these processes are carried out manually by human experts or using ad-hoc methods. To help automate security systems integration processes, we propose an Ontology-driven approach for Security OrchestrAtion Platform (OnSOAP). The developed solution enables interpretability, and interoperability among security systems, which may exist in operational silos. We demonstrate OnSOAP's support for automated integration of security systems to execute the incident response process with three security systems (Splunk, Limacharlie, and Snort) for a Distributed Denial of Service (DDoS) attack. The evaluation results show that OnSOAP enables SecOrP to interpret the input and output of different security systems, produce error-free integration details, and make security systems interoperable with each other to automate and accelerate an incident response process.
The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.
Techniques applied in response to detrimental digital incidents vary in many respects according to their attributes. Models of techniques exist in current research but are typically restricted to some subset with regards to the discipline of the incident. An enormous collection of techniques is actually available for use. There is no single model representing all these techniques. There is no current categorisation of digital forensics reactive techniques that classify techniques according to the attribute of function and nor is there an attempt to classify techniques in a means that goes beyond a subset. In this paper, an ontology that depicts digital forensic reactive techniques classified by function is presented. The ontology itself contains additional information for each technique useful for merging into a cognate system where the relationship between techniques and other facets of the digital investigative process can be defined. A number of existing techniques were collected and described according to their function - a verb. The function then guided the placement and classification of the techniques in the ontology according to the ontology development process. The ontology contributes to a knowledge base for digital forensics - essentially useful as a resource for the various people operating in the field of digital forensics. The benefit of this that the information can be queried, assumptions can be made explicit, and there is a one-stop-shop for digital forensics reactive techniques with their place in the investigation detailed.
Development of information systems dealing with education and labour market using web and grid service architecture enables their modularity, expandability and interoperability. Application of ontologies to the web helps with collecting and selecting the knowledge about a certain field in a generic way, thus enabling different applications to understand, use, reuse and share the knowledge among them. A necessary step before publishing computer-interpretable data on the public web is the implementation of common standards that will ensure the exchange of information. Croatian Qualification Framework (CROQF) is a project of standardization of occupations for the labour market, as well as standardization of sets of qualifications, skills and competences and their mutual relations. This paper analysis a respectable amount of research dealing with application of ontologies to information systems in education during the last decade. The main goal is to compare achieved results according to: 1) phases of development/classifications of education-related ontologies; 2) areas of education and 3) standards and structures of metadata for educational systems. Collected information is used to provide insight into building blocks of CROQF, both the ones well supported by experience and best practices, and the ones that are not, together with guidelines for development of own standards using ontological structures.
In the realm of Internet of Things (IoT), information security is a critical issue. Security standards, including their assessment items, are essential instruments in the evaluation of systems security. However, a key question remains open: ``Which test cases are most effective for security assessment?'' To create security assessment designs with suitable assessment items, we need to know the security properties and assessment dimensions covered by a standard. We propose an approach for selecting and analyzing security assessment items; its foundations come from a set of assessment heuristics and it aims to increase the coverage of assessment dimensions and security characteristics in assessment designs. The main contribution of this paper is the definition of a core set of security assessment heuristics. We systematize the security assessment process by means of a conceptual formalization of the security assessment area. Our approach can be applied to security standards to select or to prioritize assessment items with respect to 11 security properties and 6 assessment dimensions. The approach is flexible allowing the inclusion of dimensions and properties. Our proposal was applied to a well know security standard (ISO/IEC 27001) and its assessment items were analyzed. The proposal is meant to support: (i) the generation of high-coverage assessment designs, which include security assessment items with assured coverage of the main security characteristics, and (ii) evaluation of security standards with respect to the coverage of security aspects.
Smart grid technology is the core technology for the next-generation power grid system with enhanced energy efficiency through decision-making communication between suppliers and consumers enabled by integrating the IoT into the existing grid. This open architecture allowing bilateral information exchange makes it vulnerable to various types of cyberattack. APT attacks, one of the most common cyberattacks, are highly tricky and sophisticated attacks that can circumvent the existing detection technology and attack the targeted system after a certain latent period after intrusion. This paper proposes an ontology-based attack detection system capable of early detection of and response to APT attacks by analyzing their attacking patterns.
In this paper, we analyze the security of cyber-physical systems using the ADversary VIew Security Evaluation (ADVISE) meta modeling approach, taking into consideration the efects of physical attacks. To build our model of the system, we construct an ontology that describes the system components and the relationships among them. The ontology also deines attack steps that represent cyber and physical actions that afect the system entities. We apply the ADVISE meta modeling approach, which admits as input our deined ontology, to a railway system use case to obtain insights regarding the system’s security. The ADVISE Meta tool takes in a system model of a railway station and generates an attack execution graph that shows the actions that adversaries may take to reach their goal. We consider several adversary proiles, ranging from outsiders to insider staf members, and compare their attack paths in terms of targeted assets, time to achieve the goal, and probability of detection. The generated results show that even adversaries with access to noncritical assets can afect system service by intelligently crafting their attacks to trigger a physical sequence of efects. We also identify the physical devices and user actions that require more in-depth monitoring to reinforce the system’s security.