Visible to the public Biblio

Filters: Keyword is wireless mesh networks  [Clear All Filters]
2018-02-21
Li, C., Yang, C..  2017.  Cryptographic key management methods for mission-critical wireless networks. 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC). :33–36.
When a large scale disaster strikes, it demands an efficient communication and coordination among first responders to save life and other community resources. Normally, the traditional communication infrastructures such as landline phone or cellular networks are damaged and dont provide adequate communication services to first responders for exchanging emergency related information. Wireless mesh networks is the promising alternatives in such type of situations. The security requirements for emergency response communications include privacy, data integrity, authentication, access control and availability. To build a secure communication system, usually the first attempt is to employ cryptographic keys. In critical-mission wireless mesh networks, a mesh router needs to maintain secure data communication with its neighboring mesh routers. The effective designs on fast pairwise key generation and rekeying for mesh routers are critical for emergency response and are essential to protect unicast traffic. In this paper, we present a security-enhanced session key generation and rekeying protocols EHPFS (enhanced 4-way handshake with PFS support). It eliminate the DoS attack problem of the 4-way handshake in 802.11s. EHPFS provides additional support for perfect forward secrecy (PFS). Even in case a Primary Master Key (PMK) is exposed, the session key PTK will not be compromised. The performance and security analysis show that EHPFS is efficient.
2017-10-03
Compagno, Alberto, Conti, Mauro, Droms, Ralph.  2016.  OnboardICNg: A Secure Protocol for On-boarding IoT Devices in ICN. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :166–175.

Information-Centric Networking (ICN) is an emerging networking paradigm that focuses on content distribution and aims at replacing the current IP stack. Implementations of ICN have demonstrated its advantages over IP, in terms of network performance and resource requirements. Because of these advantages, ICN is also considered to be a good network paradigm candidate for the Internet-of-Things (IoT), especially in scenarios involving resource constrained devices. In this paper we propose OnboardICNg, the first secure protocol for on-boarding (authenticating and authorizing) IoT devices in ICN mesh networks. OnboardICNg can securely onboard resource constrained devices into an existing IoT network, outperforming the authentication protocol selected for the ZigBee-IP specification: EAP-PANA, i.e., the Protocol for carrying Authentication for Network Access (PANA) combined with the Extensible Authentication Protocol (EAP). In particular we show that, compared with EAP-PANA, OnboardICNg reduces the communication and energy consumption, by 87% and 66%, respectively.

Henri, Sébastien, Vlachou, Christina, Herzen, Julien, Thiran, Patrick.  2016.  EMPoWER Hybrid Networks: Exploiting Multiple Paths over Wireless and ElectRical Mediums. Proceedings of the 12th International on Conference on Emerging Networking EXperiments and Technologies. :51–65.

Several technologies, such as WiFi, Ethernet and power-line communications (PLC), can be used to build residential and enterprise networks. These technologies often co-exist; most networks use WiFi, and buildings are readily equipped with electrical wires that can offer a capacity up to 1 Gbps with PLC. Yet, current networks do not exploit this rich diversity and often operate far below the available capacity. We design, implement, and evaluate EMPoWER, a system that exploits simultaneously several potentially-interfering mediums. It operates at layer 2.5, between the MAC and IP layers, and combines routing (to find multiple concurrent routes) and congestion control (to efficiently balance traffic across the routes). To optimize resource utilization and robustness, both components exploit the heterogeneous nature of the network. They are fair and efficient, and they operate only within the local area network, without affecting remote Internet hosts. We demonstrate the performance gains of EMPoWER, by simulations and experiments on a 22-node testbed. We show that PLC/WiFi, benefiting from the diversity offered by wireless and electrical mediums, provides significant throughput gains (up to 10x) and improves coverage, compared to multi-channel WiFi.

Enguehard, Marcel, Droms, Ralph, Rossi, Dario.  2016.  SLICT: Secure Localized Information Centric Things. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :255–260.

While the potential advantages of geographic forwarding in wireless sensor networks (WSN) have been demonstrated for a while now, research in applying Information Centric Networking (ICN) has only gained momentum in the last few years. In this paper, we bridge these two worlds by proposing an ICN-compliant and secure implementation of geographic forwarding for ICN. We implement as a proof of concept the Greedy Perimeter Stateless Routing (GPSR) algorithm and compare its performance to that of vanilla ICN forwarding. We also evaluate the cost of security in 802.15.4 networks in terms of energy, memory and CPU footprint. We show that in sparse but large networks, GPSR outperforms vanilla ICN forwarding in both memory footprint and CPU consumption. However, GPSR is more energy intensive because of the cost of communications.

Enguehard, Marcel, Droms, Ralph, Rossi, Dario.  2016.  On the Cost of Secure Association of Information Centric Things. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :207–208.

Information Centric Networking (ICN) paradigms nicely fit the world of wireless sensors, whose devices have tight constraints. In this poster, we compare two alternative designs for secure association of new IoT devices in existing ICN deployments, which are based on asymmetric and symmetric cryptography respectively. While the security properties of both approaches are equivalent, an interesting trade-off arises between properties of the protocol vs properties of its implementation in current IoT boards. Indeed, while the asymmetric-keys based approach incurs a lower traffic overhead (of about 30%), we find that its implementation is significantly more energy- and time-consuming due to the cost of cryptographic operations (it requires up to 41x more energy and 8x more time).

Chlebus, Bogdan S., Vaya, Shailesh.  2016.  Distributed Communication in Bare-bones Wireless Networks. Proceedings of the 17th International Conference on Distributed Computing and Networking. :1:1–1:10.

We consider wireless networks in which the effects of interference are determined by the SINR model. We address the question of structuring distributed communication when stations have very limited individual capabilities. In particular, nodes do not know their geographic coordinates, neighborhoods or even the size n of the network, nor can they sense collisions. Each node is equipped only with its unique name from a range \1, ..., N\. We study the following three settings and distributed algorithms for communication problems in each of them. In the uncoordinated-start case, when one node starts an execution and other nodes are awoken by receiving messages from already awoken nodes, we present a randomized broadcast algorithm which wakes up all the nodes in O(n log2 N) rounds with high probability. In the synchronized-start case, when all the nodes simultaneously start an execution, we give a randomized algorithm that computes a backbone of the network in O(Δ log7 N) rounds with high probability. Finally, in the partly-coordinated-start case, when a number of nodes start an execution together and other nodes are awoken by receiving messages from the already awoken nodes, we develop an algorithm that creates a backbone network in time O(n log2 N + Δ log7 N) with high probability.

Bello, Oumarou Mamadou, Taiwe, Kolyang Dina.  2016.  Mesh Node Placement in Wireless Mesh Network Based on Multiobjective Evolutionary Metaheuristic. Proceedings of the International Conference on Internet of Things and Cloud Computing. :59:1–59:6.

The necessity to deploy wireless mesh network is determined by the real world application requirements. WMN does not fit some application well due to latency issues and capacity related problem with paths having more than 2 hops. With the promising IEEE 802.11ac based device a better fairness for multi-hop communications are expected to support broadband application; the rate usually varies according to the link quality and network environment. Careful network planning can effectively improves the throughput and delay of the overall network. We provide model for the placement of router nodes as an optimization process to improve performance. Our aim is to propose a WMNs planning model based on multiobjective constraints like coverage, reliability, and cost of deployment. The bit rate guarantee therefore necessary to limit the number of stations connected to the access point; to takes into account delay and fairness of the network the user's behaviors are derived. We use a multiobjective evolutionary algorithm based metaheuristic to evaluate the performance of our proposed placement algorithm.

Majumder, Abhishek, Deb, Subhrajyoti, Roy, Sudipta.  2016.  Classification and Performance Analysis of Intra-domain Mobility Management Schemes for Wireless Mesh Network. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :113:1–113:6.

Nowadays Wireless Mesh Networks (WMNs) has come up with a promising solution for modern wireless communications. But, one of the major problems with WMN is the mobility of the Mesh Clients (MCs). To offer seamless connectivity to the MCs, their mobility management is necessary. During mobility management one of the major concerns is the communication overhead incurred during handoff of the MCs. For addressing this concern, many schemes have been proposed by the researchers. In this paper, a classification of the existing intra domain mobility management schemes has been presented. The schemes have been numerically analyzed. Finally, their performance has been analyzed and compared with respect to handoff cost considering different mobility rates of the MCs.

Yang, Chen, Stoleru, Radu.  2016.  Hybrid Routing in Wireless Networks with Diverse Connectivity. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :71–80.

Real world wireless networks usually have diverse connectivity characteristics. Although existing works have identified replication as the key to the successful design of routing protocols for these networks, the questions of when the replication should be used, by how much, and how to distribute packet copies are still not satisfactorily answered. In this paper, we investigate the above questions and present the design of the Hybrid Routing Protocol (HRP). We make a key observation that delay correlations can significantly impact performance improvements gained from packet replication. Thus, we propose a novel model to capture the correlations of inter-contact times among a group of nodes. HRP utilizes both direct delays feedback and the proposed model to estimate the replication gain, which is then fed into a novel regret-minimization algorithm to dynamically decide the amount of packet replication under unknown network conditions. We evaluate HRP through extensive simulations. We show that HRP achieves up to 3.5x delivery ratio improvement and up to 50% delay reduction, with comparable and even lower overhead than state-of-art routing protocols.

Jang, Si Young, Shin, Byoung Heon, Lee, Dongman.  2016.  Implementing a Dynamically Reconfigurable Wireless Mesh Network Testbed for Multi-Faceted QoS Support. Proceedings of the 11th International Conference on Future Internet Technologies. :95–98.

Various mobile applications require different QoS requirements, thus there is a need to resolve the application requirement into the underlying mesh network to support them. Existing approach to coordinate the application traffic requirement to underlying network has been applied in wired domains. However, it is complex in the wireless domain due to the mobility and diversity of mobile applications. Much interest is focused on resolving application QoS and match request to mesh network link availability. We propose a testbed architecture which allows dynamic configuration of mesh networks and coordination of each flow to support application-aware QoS. Our prototype testbed shows adaptive change in mesh network routing configuration depending on application requests.

2017-03-13
Teke, R. J., Chaudhari, M. S., Prasad, R..  2016.  Impact of security enhancement over Autonomous Mobile Mesh Network (AMMNET). 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1–6.

The Mobile Ad-hoc Networks (MANET) are suffering from network partitioning when there is group mobility and thus cannot efficiently provide connectivity to all nodes in the network. Autonomous Mobile Mesh Network (AMMNET) is a new class of MANET which will overcome the weakness of MANET, especially from network partitioning. However, AMMNET is vulnerable to routing attacks such as Blackhole attack in which malicious node can make itself as intragroup, intergroup or intergroup bridge router and disrupt the network. In AMMNET, To maintain connectivity, network survivability is an important aspect of reliable communication. Maintaning security is a challenge in the self organising nature of the topology. To address this weakness proposed approach measured the performance of the impact of security enhancement on AMMNET with the basis of bait detection scheme. Modified bait approach that will prevent blackhole node entering into the network and helps to maintain the reliability of the network. The proposed scheme uses the idea of Wumpus World concept from Artificial Intelligence. Modified bait scheme will prevent the blackhole attack and secures network.

2017-03-07
Alanazi, S., Al-Muhtadi, J., Derhab, A., Saleem, K., AlRomi, A. N., Alholaibah, H. S., Rodrigues, J. J. P. C..  2015.  On resilience of Wireless Mesh routing protocol against DoS attacks in IoT-based ambient assisted living applications. 2015 17th International Conference on E-health Networking, Application Services (HealthCom). :205–210.

The future of ambient assisted living (AAL) especially eHealthcare almost depends on the smart objects that are part of the Internet of things (IoT). In our AAL scenario, these objects collect and transfer real-time information about the patients to the hospital server with the help of Wireless Mesh Network (WMN). Due to the multi-hop nature of mesh networks, it is possible for an adversary to reroute the network traffic via many denial of service (DoS) attacks, and hence affect the correct functionality of the mesh routing protocol. In this paper, based on a comparative study, we choose the most suitable secure mesh routing protocol for IoT-based AAL applications. Then, we analyze the resilience of this protocol against DoS attacks. Focusing on the hello flooding attack, the protocol is simulated and analyzed in terms of data packet delivery ratio, delay, and throughput. Simulation results show that the chosen protocol is totally resilient against DoS attack and can be one of the best candidates for secure routing in IoT-based AAL applications.

Toor, G. S., Ma, M..  2015.  Neighborhood area network security in smart grid using security enhanced key updating. 2015 10th International Conference on Information, Communications and Signal Processing (ICICS). :1–5.

Wireless Mesh Networks (WMNs) are being considered as most adequate for deployment in the Neighborhood Area Network (NAN) domain of the smart grid infrastructure because their features such as self-organizing, scalability and cost-efficiency complement the NAN requirements. To enhance the security of the WMNs, the key refreshment strategy for the Simultaneous Authentication of Equals (SAE) or the Efficient Mesh Security Association (EMSA) protocols is an efficient way to make the network more resilient against the cyber-attacks. However, a security vulnerability is discovered in the EMSA protocol when using the key refreshment strategy. The first message of the Mesh Key Holder Security Handshake (MKHSH) can be forged and replayed back in the next cycles of the key refreshment leading to a Denial of Service (DoS) attack. In this paper, a simple one-way hash function based scheme is proposed to prevent the unprotected message from being replayed together with an enhancement to the key refreshment scheme to improve the resilience of the MKHSH. The Protocol Composition Logic (PCL) is used to verify the logical correctness of the proposed scheme, while the Process Analysis Toolkit (PAT) is used to evaluate the security functionality against the malicious attacks.

2015-05-05
Ming Xiang, Tauch, S., Liu, W..  2014.  Dependability and Resource Optimation Analysis for Smart Grid Communication Networks. Big Data and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on. :676-681.

Smart Grid is the trend of next generation power distribution and network management that enable a two -- way interactive communication and operation between consumers and suppliers, so as to achieve intelligent resource management and optimization. The wireless mesh network technology is a promising infrastructure solution to support these smart functionalities, while it has some inherent vulnerabilities and cyber-attack risks to be addressed. As Smart Grid is heavily relying on the underlie communication networks, which makes their security and dependability issues critical to the entire smart grid technology. Several studies have been conducted in the field of Smart Grid security, but few works were focused on the dependability and its associated resource analysis of the control center networks. In this paper, we have investigated the dependability modeling and also resource allocation in redundant communication networks by adopting two mathematical approaches, Reliability Block Diagrams (RBD) and Stochastic Petri Nets (SPNs), to analyze the dependability of control center networks in Smart Grid environment. We have applied our proposed modeling approach in an extensive case study to evaluate the availability of smart gird networks with different redundancy mechanisms. A combination of dependability models and reliability importance are used to analyze the network availability according to the most important components. We also show the variation of network availability in accordance with Mean Time to Failure (MTTF) in different network architectures.

Min Li, Xin Lv, Wei Song, Wenhuan Zhou, Rongzhi Qi, Huaizhi Su.  2014.  A Novel Identity Authentication Scheme of Wireless Mesh Network Based on Improved Kerberos Protocol. Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on. :190-194.

The traditional Kerberos protocol exists some limitations in achieving clock synchronization and storing key, meanwhile, it is vulnerable from password guessing attack and attacks caused by malicious software. In this paper, a new authentication scheme is proposed for wireless mesh network. By utilizing public key encryption techniques, the security of the proposed scheme is enhanced. Besides, timestamp in the traditional protocol is replaced by random numbers to implementation cost. The analysis shows that the improved authentication protocol is fit for wireless Mesh network, which can make identity authentication more secure and efficient.

2015-05-01
Arieta, F., Barabasz, L.T., Santos, A., Nogueira, M..  2014.  Mitigating Flooding Attacks on Mobility in Infrastructure-Based Vehicular Networks. Latin America Transactions, IEEE (Revista IEEE America Latina). 12:475-483.

Infrastructure-based Vehicular Networks can be applied in different social contexts, such as health care, transportation and entertainment. They can easily take advantage of the benefices provided by wireless mesh networks (WMNs) to mobility, since WMNs essentially support technological convergence and resilience, required for the effective operation of services and applications. However, infrastructure-based vehicular networks are prone to attacks such as ARP packets flooding that compromise mobility management and users' network access. Hence, this work proposes MIRF, a secure mobility scheme based on reputation and filtering to mitigate flooding attacks on mobility management. The efficiency of the MIRF scheme has been evaluated by simulations considering urban scenarios with and without attacks. Analyses show that it significantly improves the packet delivery ratio in scenarios with attacks, mitigating their intentional negative effects, as the reduction of malicious ARP requests. Furthermore, improvements have been observed in the number of handoffs on scenarios under attacks, being faster than scenarios without the scheme.

Avallone, S., Di Stasi, G..  2014.  WiMesh: A Tool for the Performance Evaluation of Multi-Radio Wireless Mesh Networks. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

In this paper we present WiMesh, a software tool we developed during the last ten years of research conducted in the field of multi-radio wireless mesh networks. WiMesh serves two main purposes: (i) to run different algorithms for the assignment of channels, transmission rate and power to the available network radios; (ii) to automatically setup and run ns-3 simulations based on the network configuration returned by such algorithms. WiMesh basically consists of three libraries and three corresponding utilities that allow to easily conduct experiments. All such utilities accept as input an XML configuration file where a number of options can be specified. WiMesh is freely available to the research community, with the purpose of easing the development of new algorithms and the verification of their performances.

De Alwis, C., Arachchi, H.K., Fernando, A., Pourazad, M..  2014.  Content and network-aware multicast over wireless networks. Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), 2014 10th International Conference on. :122-128.

This paper proposes content and network-aware redundancy allocation algorithms for channel coding and network coding to optimally deliver data and video multicast services over error prone wireless mesh networks. Each network node allocates redundancies for channel coding and network coding taking in to account the content properties, channel bandwidth and channel status to improve the end-to-end performance of data and video multicast applications. For data multicast applications, redundancies are allocated at each network node in such a way that the total amount of redundant bits transmitted is minimised. As for video multicast applications, redundancies are allocated considering the priority of video packets such that the probability of delivering high priority video packets is increased. This not only ensures the continuous playback of a video but also increases the received video quality. Simulation results for bandwidth sensitive data multicast applications exhibit up to 10× reduction of the required amount of redundant bits compared to reference schemes to achieve a 100% packet delivery ratio. Similarly, for delay sensitive video multicast applications, simulation results exhibit up to 3.5dB PSNR gains in the received video quality.

Bhatia, R.K., Bodade, V..  2014.  Defining the framework for wireless-AMI security in smart grid. Green Computing Communication and Electrical Engineering (ICGCCEE), 2014 International Conference on. :1-5.

In smart grid, critical data like monitoring data, usage data, state estimation, billing data etc are regularly being talked among its elements. So, security of such a system, if violated, results in massive losses and damages. By compromising with security aspect of such a system is as good as committing suicide. Thus in this paper, we have proposed security mechanism in Advanced Metering Infrastructure of smart grid, formed as Mesh-Zigbee topology. This security mechanism involves PKI based Digital certificate Authentication and Intrusion detection system to protect the AMI from internal and external security attack.

do Carmo, R., Hollick, M..  2014.  Analyzing active probing for practical intrusion detection in Wireless Multihop Networks. Wireless On-demand Network Systems and Services (WONS), 2014 11th Annual Conference on. :77-80.

Practical intrusion detection in Wireless Multihop Networks (WMNs) is a hard challenge. It has been shown that an active-probing-based network intrusion detection system (AP-NIDS) is practical for WMNs. However, understanding its interworking with real networks is still an unexplored challenge. In this paper, we investigate this in practice. We identify the general functional parameters that can be controlled, and by means of extensive experimentation, we tune these parameters and analyze the trade-offs between them, aiming at reducing false positives, overhead, and detection time. The traces we collected help us to understand when and why the active probing fails, and let us present countermeasures to prevent it.

Lichtblau, B., Dittrich, A..  2014.  Probabilistic Breadth-First Search - A Method for Evaluation of Network-Wide Broadcast Protocols. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

In Wireless Mesh Networks (WMNs), Network-Wide Broadcasts (NWBs) are a fundamental operation, required by routing and other mechanisms that distribute information to all nodes in the network. However, due to the characteristics of wireless communication, NWBs are generally problematic. Optimizing them thus is a prime target when improving the overall performance and dependability of WMNs. Most existing optimizations neglect the real nature of WMNs and are based on simple graph models, which provide optimistic assumptions of NWB dissemination. On the other hand, models that fully consider the complex propagation characteristics of NWBs quickly become unsolvable due to their complexity. In this paper, we present the Monte Carlo method Probabilistic Breadth-First Search (PBFS) to approximate the reachability of NWB protocols. PBFS simulates individual NWBs on graphs with probabilistic edge weights, which reflect link qualities of individual wireless links in the WMN, and estimates reachability over a configurable number of simulated runs. This approach is not only more efficient than existing ones, but further provides additional information, such as the distribution of path lengths. Furthermore, it is easily extensible to NWB schemes other than flooding. The applicability of PBFS is validated both theoretically and empirically, in the latter by comparing reachability as calculated by PBFS and measured in a real-world WMN. Validation shows that PBFS quickly converges to the theoretically correct value and approximates the behavior of real-life testbeds very well. The feasibility of PBFS to support research on NWB optimizations or higher level protocols that employ NWBs is demonstrated in two use cases.

Soderi, S., Dainelli, G., Iinatti, J., Hamalainen, M..  2014.  Signal fingerprinting in cognitive wireless networks. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on. :266-270.

Future wireless communications are made up of different wireless technologies. In such a scenario, cognitive and cooperative principles create a promising framework for the interaction of these systems. The opportunistic behavior of cognitive radio (CR) provides an efficient use of radio spectrum and makes wireless network setup easier. However more and more frequently, CR features are exploited by malicious attacks, e.g., denial-of-service (DoS). This paper introduces active radio frequency fingerprinting (RFF) with double application scenario. CRs could encapsulate common-control-channel (CCC) information in an existing channel using active RFF and avoiding any additional or dedicated link. On the other hand, a node inside a network could use the same technique to exchange a public key during the setup of secure communication. Results indicate how the active RFF aims to a valuable technique for cognitive radio manager (CRM) framework facilitating data exchange between CRs without any dedicated channel or additional radio resource.

do Carmo, R., Hoffmann, J., Willert, V., Hollick, M..  2014.  Making active-probing-based network intrusion detection in Wireless Multihop Networks practical: A Bayesian inference approach to probe selection. Local Computer Networks (LCN), 2014 IEEE 39th Conference on. :345-353.

Practical intrusion detection in Wireless Multihop Networks (WMNs) is a hard challenge. The distributed nature of the network makes centralized intrusion detection difficult, while resource constraints of the nodes and the characteristics of the wireless medium often render decentralized, node-based approaches impractical. We demonstrate that an active-probing-based network intrusion detection system (AP-NIDS) is practical for WMNs. The key contribution of this paper is to optimize the active probing process: we introduce a general Bayesian model and design a probe selection algorithm that reduces the number of probes while maximizing the insights gathered by the AP-NIDS. We validate our model by means of testbed experimentation. We integrate it to our open source AP-NIDS DogoIDS and run it in an indoor wireless mesh testbed utilizing the IEEE 802.11s protocol. For the example of a selective packet dropping attack, we develop the detection states for our Bayes model, and show its feasibility. We demonstrate that our approach does not need to execute the complete set of probes, yet we obtain good detection rates.

Ping Yi, Ting Zhu, Qingquan Zhang, Yue Wu, Jianhua Li.  2014.  A denial of service attack in advanced metering infrastructure network. Communications (ICC), 2014 IEEE International Conference on. :1029-1034.

Advanced Metering Infrastructure (AMI) is the core component in a smart grid that exhibits a highly complex network configuration. AMI shares information about consumption, outages, and electricity rates reliably and efficiently by bidirectional communication between smart meters and utilities. However, the numerous smart meters being connected through mesh networks open new opportunities for attackers to interfere with communications and compromise utilities assets or steal customers private information. In this paper, we present a new DoS attack, called puppet attack, which can result in denial of service in AMI network. The intruder can select any normal node as a puppet node and send attack packets to this puppet node. When the puppet node receives these attack packets, this node will be controlled by the attacker and flood more packets so as to exhaust the network communication bandwidth and node energy. Simulation results show that puppet attack is a serious and packet deliver rate goes down to 20%-10%.

Bin Hu, Gharavi, H..  2014.  Smart Grid Mesh Network Security Using Dynamic Key Distribution With Merkle Tree 4-Way Handshaking. Smart Grid, IEEE Transactions on. 5:550-558.

Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.