Visible to the public Biblio

Filters: Keyword is cellular radio  [Clear All Filters]
2021-02-23
Adat, V., Parsamehr, R., Politis, I., Tselios, C., Kotsopoulos, S..  2020.  Malicious user identification scheme for network coding enabled small cell environment. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Reliable communication over the wireless network with high throughput is a major target for the next generation communication technologies. Network coding can significantly improve the throughput efficiency of the network in a cooperative environment. The small cell technology and device to device communication make network coding an ideal candidate for improved performance in the fifth generation of communication networks. However, the security concerns associated with network coding needs to be addressed before any practical implementations. Pollution attacks are considered one of the most threatening attacks in the network coding environment. Although there are different integrity schemes to detect polluted packets, identifying the exact adversary in a network coding environment is a less addressed challenge. This paper proposes a scheme for identifying and locating adversaries in a dense, network coding enabled environment of mobile nodes. It also discusses a non-repudiation protocol that will prevent adversaries from deceiving the network.
2021-01-22
Hayati, N., Suryanto, Y., Ramli, K., Suryanegara, M..  2019.  End-to-End Voice Encryption Based on Multiple Circular Chaotic Permutation. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :101–106.

Voice communication is an important need in daily activities whether delivered with or without technology. Telecommunication technology has accommodated this need by providing a wide range of infrastructure, including large varieties of devices used as intermediary and end devices. One of the cellular technologies that is very widely used by the public is GSM (Global System for Mobile), while in the military, trunked radio is still popular. However, the security systems of GSM and trunked radio have limitations. Therefore, this paper proposes a platform to secure voice data over wireless mobile communication by providing end-to-end encryption. This platform is robust to noise, real-time and remains secure. The proposed encryption utilizes multicircular permutations rotated by expanded keys as dynamic keys to scramble the data. We carry out simulations and testbed implementation to prove that application of the proposed method is feasible.

2020-12-02
Lübben, R., Morgenroth, J..  2019.  An Odd Couple: Loss-Based Congestion Control and Minimum RTT Scheduling in MPTCP. 2019 IEEE 44th Conference on Local Computer Networks (LCN). :300—307.

Selecting the best path in multi-path heterogeneous networks is challenging. Multi-path TCP uses by default a scheduler that selects the path with the minimum round trip time (minRTT). A well-known problem is head-of-line blocking at the receiver when packets arrive out of order on different paths. We shed light on another issue that occurs if scheduling have to deal with deep queues in the network. First, we highlight the relevance by a real-world experiment in cellular networks that often deploy deep queues. Second, we elaborate on the issues with minRTT scheduling and deep queues in a simplified network to illustrate the root causes; namely the interaction of the minRTT scheduler and loss-based congestion control that causes extensive bufferbloat at network elements and distorts RTT measurement. This results in extraordinary large buffer sizes for full utilization. Finally, we discuss mitigation techniques and show how alternative congestion control algorithms mitigate the effect.

2020-09-08
Hayati, Nur, Suryanto, Yohan, Ramli, Kalamullah, Suryanegara, Muhammad.  2019.  End-to-End Voice Encryption Based on Multiple Circular Chaotic Permutation. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :101–106.
Voice communication is an important need in daily activities whether delivered with or without technology. Telecommunication technology has accommodated this need by providing a wide range of infrastructure, including large varieties of devices used as intermediary and end devices. One of the cellular technologies that is very widely used by the public is GSM (Global System for Mobile), while in the military, trunked radio is still popular. However, the security systems of GSM and trunked radio have limitations. Therefore, this paper proposes a platform to secure voice data over wireless mobile communication by providing end-to-end encryption. This platform is robust to noise, real-time and remains secure. The proposed encryption utilizes multicircular permutations rotated by expanded keys as dynamic keys to scramble the data. We carry out simulations and testbed implementation to prove that application of the proposed method is feasible.
2020-03-16
de Matos Patrocínio dos Santos, Bernardo, Dzogovic, Bruno, Feng, Boning, Do, Van Thuan, Jacot, Niels, van Do, Thanh.  2019.  Towards Achieving a Secure Authentication Mechanism for IoT Devices in 5G Networks. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :130–135.

Upon the new paradigm of Cellular Internet of Things, through the usage of technologies such as Narrowband IoT (NB-IoT), a massive amount of IoT devices will be able to use the mobile network infrastructure to perform their communications. However, it would be beneficial for these devices to use the same security mechanisms that are present in the cellular network architecture, so that their connections to the application layer could see an increase on security. As a way to approach this, an identity management and provisioning mechanism, as well as an identity federation between an IoT platform and the cellular network is proposed as a way to make an IoT device deemed worthy of using the cellular network and perform its actions.

2020-02-17
Hao, Lina, Ng, Bryan.  2019.  Self-Healing Solutions for Wi-Fi Networks to Provide Seamless Handover. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :639–642.
The dynamic nature of the wireless channel poses a challenge to services requiring seamless and uniform network quality of service (QoS). Self-healing, a promising approach under the self-organizing networks (SON) paradigm, and has been shown to deal with unexpected network faults in cellular networks. In this paper, we use simple machine learning (ML) algorithms inspired by SON developments in cellular networks. Evaluation results show that the proposed approach identifies the faulty APs. Our proposed approach improves throughput by 63.6% and reduces packet loss rate by 16.6% compared with standard 802.11.
2019-12-05
Sahu, Abhijeet, Goulart, Ana.  2019.  Implementation of a C-UNB Module for NS-3 and Validation for DLMS-COSEM Application Layer Protocol. 2019 IEEE ComSoc International Communications Quality and Reliability Workshop (CQR). :1-6.

The number of sensors and embedded devices in an urban area can be on the order of thousands. New low-power wide area (LPWA) wireless network technologies have been proposed to support this large number of asynchronous, low-bandwidth devices. Among them, the Cooperative UltraNarrowband (C-UNB) is a clean-slate cellular network technology to connect these devices to a remote site or data collection server. C-UNB employs small bandwidth channels, and a lightweight random access protocol. In this paper, a new application is investigated - the use of C-UNB wireless networks to support the Advanced Metering Infrastructure (AMI), in order to facilitate the communication between smart meters and utilities. To this end, we adapted a mathematical model for C-UNB, and implemented a network simulation module in NS-3 to represent C-UNB's physical and medium access control layer. For the application layer, we implemented the DLMS-COSEM protocol, or Device Language Message Specification - Companion Specification for Energy Metering. Details of the simulation module are presented and we conclude that it supports the results of the mathematical model.

2019-06-17
Gu, R., Zhang, X., Yu, L., Zhang, J..  2018.  Enhancing Security and Scalability in Software Defined LTE Core Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :837–842.

The rapid development of mobile networks has revolutionized the way of accessing the Internet. The exponential growth of mobile subscribers, devices and various applications frequently brings about excessive traffic in mobile networks. The demand for higher data rates, lower latency and seamless handover further drive the demand for the improved mobile network design. However, traditional methods can no longer offer cost-efficient solutions for better user quality of experience with fast time-to-market. Recent work adopts SDN in LTE core networks to meet the requirement. In these software defined LTE core networks, scalability and security become important design issues that must be considered seriously. In this paper, we propose a scalable channel security scheme for the software defined LTE core network. It applies the VxLAN for scalable tunnel establishment and MACsec for security enhancement. According to our evaluation, the proposed scheme not only enhances the security of the channel communication between different network components, but also improves the flexibility and scalability of the core network with little performance penalty. Moreover, it can also shed light on the design of the next generation cellular network.

2019-03-25
Son, W., Jung, B. C., Kim, C., Kim, J. M..  2018.  Pseudo-Random Beamforming with Beam Selection for Improving Physical-Layer Security. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :382–384.
In this paper, we propose a novel pseudo-random beamforming technique with beam selection for improving physical-layer security (PLS) in a downlink cellular network where consists of a base station (BS) with Ntantennas, NMSlegitimate mobile stations (MSs), and NEeavesdroppers. In the proposed technique, the BS generates multiple candidates of beamforming matrix each of which consists of orthogonal beamforming vectors in a pseudo-random manner. Each legitimate MS opportunistically feeds back the received signal-to-interference-and-noise ratio (SINR) value for all beamforming vectors to the BS. The BS transmits data to the legitimate MSs with the optimal beamforming matrix among multiple beam forming matrices that maximizes the secrecy sum-rate. Simulation results show that the proposed technique outperforms the conventional random beamforming technique in terms of the achievable secrecy sum-rate.
2019-03-06
Nieto, A., Acien, A., Lopez, J..  2018.  Capture the RAT: Proximity-Based Attacks in 5G Using the Routine Activity Theory. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :520-527.

The fifth generation of cellular networks (5G) will enable different use cases where security will be more critical than ever before (e.g. autonomous vehicles and critical IoT devices). Unfortunately, the new networks are being built on the certainty that security problems cannot be solved in the short term. Far from reinventing the wheel, one of our goals is to allow security software developers to implement and test their reactive solutions for the capillary network of 5G devices. Therefore, in this paper a solution for analysing proximity-based attacks in 5G environments is modelled and tested using OMNET++. The solution, named CRAT, is able to decouple the security analysis from the hardware of the device with the aim to extend the analysis of proximity-based attacks to different use-cases in 5G. We follow a high-level approach, in which the devices can take the role of victim, offender and guardian following the principles of the routine activity theory.

2018-12-03
Catania, E., Corte, A. La.  2018.  Location Privacy in Virtual Cell-Equipped Ultra-Dense Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.

Ultra-dense Networks are attracting significant interest due to their ability to provide the next generation 5G cellular networks with a high data rate, low delay, and seamless coverage. Several factors, such as interferences, energy constraints, and backhaul bottlenecks may limit wireless networks densification. In this paper, we study the effect of mobile node densification, access node densification, and their aggregation into virtual entities, referred to as virtual cells, on location privacy. Simulations show that the number of tracked mobile nodes might be statistically reduced up to 10 percent by implementing virtual cells. Moreover, experiments highlight that success of tracking attacks has an inverse relationship to the number of moving nodes. The present paper is a preliminary attempt to analyse the effectiveness of cell virtualization to mitigate location privacy threats in ultra-dense networks.

2018-10-26
Li, J., Hua, C..  2017.  RaptorQ code based concurrent transmissions in dual connectivity LTE network. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.

Dual Connectivity(DC) is one of the key technologies standardized in Release 12 of the 3GPP specifications for the Long Term Evolution (LTE) network. It attempts to increase the per-user throughput by allowing the user equipment (UE) to maintain connections with the MeNB (master eNB) and SeNB (secondary eNB) simultaneously, which are inter-connected via non-ideal backhaul. In this paper, we focus on one of the use cases of DC whereby the downlink U-plane data is split at the MeNB and transmitted to the UE via the associated MeNB and SeNB concurrently. In this case, out-of-order packet delivery problem may occur at the UE due to the delay over the non-ideal backhaul link, as well as the dynamics of channel conditions over the MeNB-UE and SeNB-UE links, which will introduce extra delay for re-ordering the packets. As a solution, we propose to adopt the RaptorQ FEC code to encode the source data at the MeNB, and then the encoded symbols are separately transmitted through the MeNB and SeNB. The out-of-order problem can be effectively eliminated since the UE can decode the original data as long as it receives enough encoded symbols from either the MeNB or SeNB. We present detailed protocol design for the RaptorQ code based concurrent transmission scheme, and simulation results are provided to illustrate the performance of the proposed scheme.

2018-05-24
Zhang, T., Wang, Y., Liang, X., Zhuang, Z., Xu, W..  2017.  Cyber Attacks in Cyber-Physical Power Systems: A Case Study with GPRS-Based SCADA Systems. 2017 29th Chinese Control And Decision Conference (CCDC). :6847–6852.

With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.

2018-02-28
Hong, H., Choi, H., Kim, D., Kim, H., Hong, B., Noh, J., Kim, Y..  2017.  When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :595–609.

Recently, cellular operators have started migrating to IPv6 in response to the increasing demand for IP addresses. With the introduction of IPv6, cellular middleboxes, such as firewalls for preventing malicious traffic from the Internet and stateful NAT64 boxes for providing backward compatibility with legacy IPv4 services, have become crucial to maintain stability of cellular networks. This paper presents security problems of the currently deployed IPv6 middleboxes of five major operators. To this end, we first investigate several key features of the current IPv6 deployment that can harm the safety of a cellular network as well as its customers. These features combined with the currently deployed IPv6 middlebox allow an adversary to launch six different attacks. First, firewalls in IPv6 cellular networks fail to block incoming packets properly. Thus, an adversary could fingerprint cellular devices with scanning, and further, she could launch denial-of-service or over-billing attacks. Second, vulnerabilities in the stateful NAT64 box, a middlebox that maps an IPv6 address to an IPv4 address (and vice versa), allow an adversary to launch three different attacks: 1) NAT overflow attack that allows an adversary to overflow the NAT resources, 2) NAT wiping attack that removes active NAT mappings by exploiting the lack of TCP sequence number verification of firewalls, and 3) NAT bricking attack that targets services adopting IP-based blacklisting by preventing the shared external IPv4 address from accessing the service. We confirmed the feasibility of these attacks with an empirical analysis. We also propose effective countermeasures for each attack.

2018-02-21
Talreja, R., Motwani, D..  2017.  SecTrans: Enhacing user privacy on Android Platform. 2017 International Conference on Nascent Technologies in Engineering (ICNTE). :1–4.

Interchange of information through cell phones, Tabs and PDAs (Personal Digital Assistant) is the new trend in the era of digitization. In day-to-day activities, sensitive information through mobile phones is exchanged among the users. This sensitive information can be in the form of text messages, images, location, etc. The research on Android mobile applications was done at the MIT, and found that applications are leaking enormous amount of information to the third party servers. 73 percent of 55 Android applications were detected to leak personal information of the users [8]. Transmission of files securely on Android is a big issue. Therefore it is important to shield the privacy of user data on Android operating system. The main motive of this paper is to protect the privacy of data on Android Platform by allowing transmission of textual data, location, pictures in encrypted format. By doing so, we achieved intimacy and integrity of data.

Liu, M., Yan, Y. J., Li, W..  2017.  Implementation and optimization of A5-1 algorithm on coarse-grained reconfigurable cryptographic logic array. 2017 IEEE 12th International Conference on ASIC (ASICON). :279–282.

A5-1 algorithm is a stream cipher used to encrypt voice data in GSM, which needs to be realized with high performance due to real-time requirements. Traditional implementation on FPGA or ASIC can't obtain a trade-off among performance, cost and flexibility. To this aim, this paper introduces CGRCA to implement A5-1, and in order to optimize the performance and resource consumption, this paper proposes a resource-based path seeking (RPS) algorithm to develop an advanced implementation. Experimental results show that final optimal throughput of A5-1 implemented on CGRCA is 162.87Mbps when the frequency is 162.87MHz, and the set-up time is merely 87 cycles, which is optimal among similar works.

2018-02-14
Raju, S., Boddepalli, S., Gampa, S., Yan, Q., Deogun, J. S..  2017.  Identity management using blockchain for cognitive cellular networks. 2017 IEEE International Conference on Communications (ICC). :1–6.
Cloud-centric cognitive cellular networks utilize dynamic spectrum access and opportunistic network access technologies as a means to mitigate spectrum crunch and network demand. However, furnishing a carrier with personally identifiable information for user setup increases the risk of profiling in cognitive cellular networks, wherein users seek secondary access at various times with multiple carriers. Moreover, network access provisioning - assertion, authentication, authorization, and accounting - implemented in conventional cellular networks is inadequate in the cognitive space, as it is neither spontaneous nor scalable. In this paper, we propose a privacy-enhancing user identity management system using blockchain technology which places due importance on both anonymity and attribution, and supports end-to-end management from user assertion to usage billing. The setup enables network access using pseudonymous identities, hindering the reconstruction of a subscriber's identity. Our test results indicate that this approach diminishes access provisioning duration by up to 4x, decreases network signaling traffic by almost 40%, and enables near real-time user billing that may lead to approximately 3x reduction in payments settlement time.
2018-02-02
Anderson, E. C., Okafor, K. C., Nkwachukwu, O., Dike, D. O..  2017.  Real time car parking system: A novel taxonomy for integrated vehicular computing. 2017 International Conference on Computing Networking and Informatics (ICCNI). :1–9.
Automation of real time car parking system (RTCPS) using mobile cloud computing (MCC) and vehicular networking (VN) has given rise to a novel concept of integrated communication-computing platforms (ICCP). The aim of ICCP is to evolve an effective means of addressing challenges such as improper parking management scheme, traffic congestion in parking lots, insecurity of vehicles (safety applications), and other Infrastructure-to-Vehicle (I2V) services for providing data dissemination and content delivery services to connected Vehicular Clients (VCs). Edge (parking lot based) Fog computing (EFC) through road side sensor based monitoring is proposed to achieve ICCP. A real-time cloud to vehicular clients (VCs) in the context of smart car parking system (SCPS) which satisfies deterministic and non-deterministic constraints is introduced. Vehicular cloud computing (VCC) and intra-Edge-Fog node architecture is presented for ICCP. This is targeted at distributed mini-sized self-energized Fog nodes/data centers, placed between distributed remote cloud and VCs. The architecture processes data-disseminated real-time services to the connected VCs. The work built a prototype testbed comprising a black box PSU, Arduino IoT Duo, GH-311RT ultrasonic distance sensor and SHARP 2Y0A21 passive infrared sensor for vehicle detection; LinkSprite 2MP UART JPEG camera module, SD card module, RFID card reader, RDS3115 metal gear servo motors, FPM384 fingerprint scanner, GSM Module and a VCC web portal. The testbed functions at the edge of the vehicular network and is connected to the served VCs through Infrastructure-to-Vehicular (I2V) TCP/IP-based single-hop mobile links. This research seeks to facilitate urban renewal strategies and highlight the significance of ICCP prototype testbed. Open challenges and future research directions are discussed for an efficient VCC model which runs on networked fog centers (NetFCs).
2018-01-16
Guri, M., Mirsky, Y., Elovici, Y..  2017.  9-1-1 DDoS: Attacks, Analysis and Mitigation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :218–232.

The 911 emergency service belongs to one of the 16 critical infrastructure sectors in the United States. Distributed denial of service (DDoS) attacks launched from a mobile phone botnet pose a significant threat to the availability of this vital service. In this paper we show how attackers can exploit the cellular network protocols in order to launch an anonymized DDoS attack on 911. The current FCC regulations require that all emergency calls be immediately routed regardless of the caller's identifiers (e.g., IMSI and IMEI). A rootkit placed within the baseband firmware of a mobile phone can mask and randomize all cellular identifiers, causing the device to have no genuine identification within the cellular network. Such anonymized phones can issue repeated emergency calls that cannot be blocked by the network or the emergency call centers, technically or legally. We explore the 911 infrastructure and discuss why it is susceptible to this kind of attack. We then implement different forms of the attack and test our implementation on a small cellular network. Finally, we simulate and analyze anonymous attacks on a model of current 911 infrastructure in order to measure the severity of their impact. We found that with less than 6K bots (or \$100K hardware), attackers can block emergency services in an entire state (e.g., North Carolina) for days. We believe that this paper will assist the respective organizations, lawmakers, and security professionals in understanding the scope of this issue in order to prevent possible 911-DDoS attacks in the future.

2017-04-20
Vidhya, R., Karthik, P..  2016.  Coexistence of cellular IOT and 4G networks. 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). :555–558.

Increase in M2M use cases, the availability of narrow band spectrum with operators and a need for very low cost modems for M2M applications has led to the discussions around what is called as Cellular IOT (CIOT). In order to develop the Cellular IOT network, discussions are focused around developing a new air interface that can leverage narrow band spectrum as well as lead to low cost modems which can be embedded into M2M/IOT devices. One key issue that arises during the development of a clean slate CIOT network is that of coexistence with the 4G networks. In this paper we explore architectures for Cellular IOT and 4G network harmonization that also addresses the one key requirement of possibly using narrow channels for IOT on the existing 4G networks and not just as a separate standalone Cellular IOT system. We analyze the architectural implication on the core network load in a tightly coupled CIOT-LTE architecture propose a offload mechanism from LTE to CIOT cells.

Chiti, F., Giacomo, D. Di, Fantacci, R., Pierucci, L., Carlini, C..  2016.  Optimized Narrow-Band M2M Systems for Massive Cellular IoT Communications. 2016 IEEE Global Communications Conference (GLOBECOM). :1–6.

Simple connectivity and data requirements together with high lifetime of battery are the main issues for the machine-to-machine (M2M) communications. 3GPP focuses on three main licensed standardizations based on Long Term Evolution (LTE), GSM and clean-slate technologies. The paper considers the last one and proposes a modified slotted-Aloha method to increase the capability of supporting a massive number of low-throughput devices. The proposed method increases the access rate of users belonging to each class considered in the clean-slate standard and consequently the total throughput offered by the system. To derive the mean access rate per class, we use the Markov chain approach and simulation results are provided for scenarios with different data rate and also in terms of cell average delay.

2017-03-08
Luo, Z., Gilimyanov, R., Zhuang, H., Zhang, J..  2015.  Network-Wide Optimization of Uplink Fractional Power Control in LTE Networks. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). :1–5.

Next generation cellular networks will provide users better experiences by densely deploying smaller cells, which results in more complicated interferences environment. In order to coordinate interference, power control for uplink is particularly challenging due to random locations of uplink transmitter and dense deployment. In this paper, we address the uplink fractional power control (FPC) optimization problem from network optimization perspective. The relations between FPC parameters and network KPIs (Key Performance Indicators) are investigated. Rather than considering any single KPI in conventional approaches, multi-KPI optimization problem is formulated and solved. By relaxing the discrete optimization problem to a continuous one, the gradients of multiple KPIs with respect to FPC parameters are derived. The gradient enables efficiently searching for optimized FPC parameters which is particularly desirable for dense deployment of large number of cells. Simulation results show that the proposed scheme greatly outperforms the traditional one, in terms of network mean load, call drop & block ratio, and convergence speed.

Wang, X., Teng, Y., Song, M., Wang, X., Yuan, H..  2015.  Joint Optimization of Coverage and Capacity Based on Power Density Distribution in Heterogeneous Cellular Networks. 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). :251–255.

The paper presents a joint optimization algorithm for coverage and capacity in heterogeneous cellular networks. A joint optimization objective related to capacity loss considering both coverage hole and overlap area based on power density distribution is proposed. The optimization object is a NP problem due to that the adjusting parameters are mixed with discrete and continuous, so the bacterial foraging (BF) algorithm is improved based on network performance analysis result to find a more effective direction than randomly selected. The results of simulation show that the optimization object is feasible gains a better effect than traditional method.

2017-02-14
A. Chouhan, S. Singh.  2015.  "Real time secure end to end communication over GSM network". 2015 International Conference on Energy Systems and Applications. :663-668.

GSM network is the most widely used communication network for mobile phones in the World. However the security of the voice communication is the main issue in the GSM network. This paper proposes the technique for secure end to end communication over GSM network. The voice signal is encrypted at real time using digital techniques and transmitted over the GSM network. At receiver end the same decoding algorithm is used to extract the original speech signal. The speech trans-coding process of the GSM, severely distort an encrypted signal that does not possess the characteristics of speech signal. Therefore, it is not possible to use standard modem techniques over the GSM speech channel. The user may choose an appropriate algorithm and hardware platform as per requirement.

2015-05-05
Tombaz, S., Sang-wook Han, Ki Won Sung, Zander, J..  2014.  Energy Efficient Network Deployment With Cell DTX. Communications Letters, IEEE. 18:977-980.

Cell discontinuous transmission (DTX) is a new feature that enables sleep mode operations at base station (BS) side during the transmission time intervals when there is no traffic. In this letter, we analyze the maximum achievable energy saving of the cell DTX. We incorporate the cell DTX with a clean-slate network deployment and obtain optimal BS density for lowest energy consumption satisfying a certain quality of service requirement considering daily traffic variation. The numerical result indicates that the fast traffic adaptation capability of cell DTX favors dense network deployment with lightly loaded cells, which brings about considerable improvement in energy saving.