Visible to the public Biblio

Filters: Keyword is mobility management (mobile radio)  [Clear All Filters]
2021-03-16
Netalkar, P. P., Maheshwari, S., Raychaudhuri, D..  2020.  Evaluation of Network Assisted Handoffs in Heterogeneous Networks. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.

2020-12-02
Sun, Z., Du, P., Nakao, A., Zhong, L., Onishi, R..  2019.  Building Dynamic Mapping with CUPS for Next Generation Automotive Edge Computing. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—6.

With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.

Zhao, Q., Du, P., Gerla, M., Brown, A. J., Kim, J. H..  2018.  Software Defined Multi-Path TCP Solution for Mobile Wireless Tactical Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1—9.
Naval Battlefield Network communications rely on wireless network technologies to transmit data between different naval entities, such as ships and shore nodes. Existing naval battle networks heavily depend on the satellite communication system using single-path TCP for reliable, non-interactive data. While satisfactory for traditional use cases, this communication model may be inadequate for outlier cases, such as those arising from satellite failure and wireless signal outage. To promote network stability and assurance in such scenarios, the addition of unmanned aerial vehicles to function as relay points can complement network connectivity and alleviate potential strains in adverse conditions. The inherent mobility of aerial vehicles coupled with existing source node movements, however, leads to frequent network handovers with non-negligible overhead and communication interruption, particularly in the present single-path model. In this paper, we propose a solution based on multi-path TCP and software-defined networking, which, when applied to mobile wireless heterogeneous networks, reduces the network handover delay and improves the total throughput for transmissions among various naval entities at sea and littoral. In case of single link failure, the presence of a connectable relay point maintains TCP connectivity and reduces the risk of service interruption. To validate feasibility and to evaluate performance of our solution, we constructed a Mininet- WiFi emulation testbed. Compared against single-path TCP communication methods, execution of the testbed when configured to use multi-path TCP and UAV relays yields demonstrably more stable network handovers with relatively low overhead, greater reliability of network connectivity, and higher overall end-to-end throughput. Because the SDN global controller dynamically adjusts allocations per user, the solution effectively eliminates link congestion and promotes more efficient bandwidth utilization.
2020-11-17
Hossain, M. S., Ramli, M. R., Lee, J. M., Kim, D.-S..  2019.  Fog Radio Access Networks in Internet of Battlefield Things (IoBT) and Load Balancing Technology. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :750—754.

The recent trend of military is to combined Internet of Things (IoT) knowledge to their field for enhancing the impact in battlefield. That's why Internet of battlefield (IoBT) is our concern. This paper discusses how Fog Radio Access Network(F-RAN) can provide support for local computing in Industrial IoT and IoBT. F-RAN can play a vital role because of IoT devices are becoming popular and the fifth generation (5G) communication is also an emerging issue with ultra-low latency, energy consumption, bandwidth efficiency and wide range of coverage area. To overcome the disadvantages of cloud radio access networks (C-RAN) F-RAN can be introduced where a large number of F-RAN nodes can take part in joint distributed computing and content sharing scheme. The F-RAN in IoBT is effective for enhancing the computing ability with fog computing and edge computing at the network edge. Since the computing capability of the fog equipment are weak, to overcome the difficulties of fog computing in IoBT this paper illustrates some challenging issues and solutions to improve battlefield efficiency. Therefore, the distributed computing load balancing problem of the F-RAN is researched. The simulation result indicates that the load balancing strategy has better performance for F-RAN architecture in the battlefield.

2020-11-16
Gupta, S., Parne, B. L., Chaudhari, N. S..  2018.  Security Vulnerabilities in Handover Authentication Mechanism of 5G Network. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). :369–374.
The main objective of the Third Generation Partnership Project (3GPP) is to fulfill the increasing security demands of IoT-based applications with the evolution of Fifth Generation (5G) mobile telecommunication technology. In June 2018, the 3GPP has published the study report of the handover architecture and security functions of in 5G communication network. In this paper, we discuss the 5G handover key mechanism with its key hierarchy. In addition, the inter-gNB handover authentication mechanism in 5G communication network is analyzed and identify the security vulnerabilities such as false base-station attack, de-synchronization attack, key compromise, etc. In addition, the handover mechanism suffers from authentication complexity due to high signaling overhead. To overcome these problems, we recommend some countermeasures as pre-authentication of communication entities, delegation of authentication and predistribution of secret keys. This is first work in the 5G handover security analysis. We anticipate that the above security issues and key resilience problem can be avoided from the proposed solutions.
2020-09-14
HANJRI, Adnane EL, HAYAR, Aawatif, Haqiq, Abdelkrim.  2019.  Combined Compressive Sampling Techniques and Features Detection using Kullback Leibler Distance to Manage Handovers. 2019 IEEE International Smart Cities Conference (ISC2). :504–507.
In this paper, we present a new Handover technique which combines Distribution Analysis Detector and Compressive Sampling Techniques. The proposed approach consists of analysing Received Signal probability density function instead of demodulating and analysing Received Signal itself as in classical handover. In this method we will exploit some mathematical tools like Kullback Leibler Distance, Akaike Information Criterion (AIC) and Akaike weights, in order to decide blindly the best handover and the best Base Station (BS) for each user. The Compressive Sampling algorithm is designed to take advantage from the primary signals sparsity and to keep the linearity and properties of the original signal in order to be able to apply Distribution Analysis Detector on the compressed measurements.
2020-09-08
Guimarães, Carlos, Quevedo, José, Ferreira, Rui, Corujo, Daniel, Aguiar, Rui L..  2019.  Content Retrieval while Moving Across IP and NDN Network Architectures. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–6.
Research on Future Internet has gained traction in recent years, with a variety of clean-slate network architectures being proposed. The realization of such proposals may lead to a period of coexistence with the current Internet, creating a heterogeneous Future Internet. In such a vision, mobile nodes (MNs) can move across access networks supporting different network architectures, while being able to maintain the access to content during this movement. In order to support such scenarios, this paper proposes an inter-network architecture mobility framework that allows MNs to move across different network architectures without losing access to the contents being accessed. The usage of the proposed framework is exemplified and evaluated in a mobility scenario targeting IP and NDN network architectures in a content retrieval use case. The obtained results validate the proposed framework while highlighting the impact on the overall communication between the MN and content source.
Campioni, Lorenzo, Tortonesi, Mauro, Wissingh, Bastiaan, Suri, Niranjan, Hauge, Mariann, Landmark, Lars.  2019.  Experimental Evaluation of Named Data Networking (NDN) in Tactical Environments. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :43–48.
Tactical edge networks represent a uniquely challenging environment from the communications perspective, due to their limited bandwidth and high node mobility. Several middleware communication solutions have been proposed to address those issues, adopting an evolutionary design approach that requires facing quite a few complications to provide applications with a suited network programming model while building on top of the TCP/IP stack. Information Centric Networking (ICN), instead, represents a revolutionary, clean slate approach that aims at replacing the entire TCP/IP stack with a new communication paradigm, better suited to cope with fluctuating channel conditions and network disruptions. This paper, stemmed from research conducted within NATO IST-161 RTG, investigates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption. We evaluated an NDN-based Blue Force Tracking (BFT) dissemination application within the Anglova scenario emulation environment, and found that NDN obtained better-than-expected results in terms of delivery ratio and latency, at the expense of a relatively high bandwidth consumption.
Yang, Bowen, Chen, Xiang, Xie, Jinsen, Li, Sugang, Zhang, Yanyong, Yang, Jian.  2019.  Multicast Design for the MobilityFirst Future Internet Architecture. 2019 International Conference on Computing, Networking and Communications (ICNC). :88–93.
With the advent of fifth generation (5G) network and increasingly powerful mobile devices, people can conveniently obtain network resources wherever they are and whenever they want. However, the problem of mobility support in current network has not been adequately solved yet, especially in inter-domain mobile scenario, which leads to poor experience for mobile consumers. MobilityFirst is a clean slate future Internet architecture which adopts a clean separation between identity and network location. It provides new mechanisms to address the challenge of wireless access and mobility at scale. However, MobilityFirst lacks effective ways to deal with multicast service over mobile networks. In this paper, we design an efficient multicast mechanism based on MobilityFirst architecture and present the deployment in current network at scale. Furthermore, we propose a hierarchical multicast packet header with additional destinations to achieve low-cost dynamic multicast routing and provide solutions for both the multicast source and the multicast group members moving in intra- or inter-domain. Finally, we deploy a multicast prototype system to evaluate the performance of the proposed multicast mechanism.
2020-08-03
Gopalakrishnan, S., Rajesh, A..  2019.  Cluster based Intrusion Detection System for Mobile Ad-hoc Network. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:11–15.

Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.

2020-07-13
Inn, Arba’iah, Hassan, Rosilah, Mohd Aman, Azana Hafizah, Abdul Latiff, Liza.  2019.  Framework for Handover process using Visible Light Communications in 5G. 2019 Symposium on Future Telecommunication Technologies (SOFTT). 1:1–4.
Internet of Things (IoT) revolution in 5th Generation (5G) will dynamically support all user, devices and customer worldwide where these devices, mechanical and digital machines will be connected and are able to communicate and transfer data over the network. In industries, the evolution of these technologies, known as Industrial IoT (IIoT) will enable machines to be connected and communicate where else, Internet of Everything (IoE) makes the connection more relevant between all smart devices, machines and also people with a huge data, high speed and high security. The growth of these technologies has made Radio Frequency (RF) spectrum resources for wireless communication to be more saturated. In order to solve this problem, new wireless communication technologies are proposed to meet the demand and also to enhance the performance of the system and overcome the existing bandwidth limitations. Studies done shows that Light-Fidelity (Li-Fi), based on Visible Light Communications (VLC) is one of the most promising technology in future which is based on optical wireless communication. Initial study on the Li-Fi concept has focuses on achieving speed, bi-directional transmission concept and supports multiuser access. In this paper we propose a frame work focuses on the handover process for indoor environment by using the steerable Access Point (AP) and compare the output result with fix Access Point.
2020-05-26
Hamamreh, Rushdi A., Ayyad, Mohammad, Jamoos, Mohammad.  2019.  RAD: Reinforcement Authentication DYMO Protocol for MANET. 2019 International Conference on Promising Electronic Technologies (ICPET). :136–141.
Mobile ad hoc network (MANET) does not have fixed infrastructure centralized server which manage the connections between the nodes. Rather, the nodes in MANET move randomly. Thus, it is risky to exchange data between nodes because there is a high possibility of having malicious node in the path. In this paper, we will describe a new authentication technique using message digest 5 (MD5), hashing for dynamic MANET on demand protocol (DYMO) based on reinforcement learning. In addition, we will describe an encryption technique that can be used without the need for a third party to distribute a secret key. After implementing the suggested model, results showed a remarkable enhancement in securing the path by increasing the packet delivery ratio and average throughput. On the other hand, there was an increase in end to end delay due to time spent in cryptographic operations.
Junnarkar, Aparna A., Singh, Y. P., Deshpande, Vivek S..  2018.  SQMAA: Security, QoS and Mobility Aware ACO Based Opportunistic Routing Protocol for MANET. 2018 4th International Conference for Convergence in Technology (I2CT). :1–6.
The QoS performance of MANET routing protocols is significantly affected by the mobility conditions in network. Secondly, as MANET open nature network, there is strong possibility of different types of vulnerabilities such as blackhole attack, malicious attack, DoS attacks etc. In this research work, we are designing the novel opportunistic routing protocol in order to address the challenges of network security as well as QoS improvement. There two algorithms designed in this paper. First we proposed and designed novel QoS improvement algorithm based on optimization scheme called Ant Colony Optimization (ACO) with swarm intelligence approach. This proposed method used the RSSI measurements to determine the distance between two mobile nodes in order to select efficient path for communication. This new routing protocol is named as QoS Mobility Aware ACO (QMAA) Routing Protocol. Second, we designed security algorithm for secure communication and user's authentication in MANET under the presence attackers in network. With security algorithm the QoS aware protocol is proposed named as Secure-QMAA (SQMAA). The SQMAA achieved secure communications while guaranteed QoS performance against existing routing protocols. The simulation results shows that under the presence of malicious attackers, the performance of SQMAA are efficient as compared to QMAA and state-of-art routing protocol.
2020-03-27
Lai, Chengzhe, Ding, Yuhan.  2019.  A Secure Blockchain-Based Group Mobility Management Scheme in VANETs. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :340–345.

Vehicular Ad-hoc Network (VANET) can provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications for efficient and safe transportation. The vehicles features high mobility, thus undergoing frequent handovers when they are moving, which introduces the significant overload on the network entities. To address the problem, the distributed mobility management (DMM) protocol for next generation mobile network has been proposed, which can be well combined with VANETs. Although the existing DMM solutions can guarantee the smooth handovers of vehicles, the security has not been fully considered in the mobility management. Moreover, the most of existing schemes cannot support group communication scenario. In this paper, we propose an efficient and secure group mobility management scheme based on the blockchain. Specifically, to reduce the handover latency and signaling cost during authentication, aggregate message authentication code (AMAC) and one-time password (OTP) are adopted. The security analysis and the performance evaluation results show that the proposed scheme can not only enhance the security functionalities but also support fast handover authentication.

2020-02-17
Hao, Lina, Ng, Bryan.  2019.  Self-Healing Solutions for Wi-Fi Networks to Provide Seamless Handover. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :639–642.
The dynamic nature of the wireless channel poses a challenge to services requiring seamless and uniform network quality of service (QoS). Self-healing, a promising approach under the self-organizing networks (SON) paradigm, and has been shown to deal with unexpected network faults in cellular networks. In this paper, we use simple machine learning (ML) algorithms inspired by SON developments in cellular networks. Evaluation results show that the proposed approach identifies the faulty APs. Our proposed approach improves throughput by 63.6% and reduces packet loss rate by 16.6% compared with standard 802.11.
2020-01-21
Luo, Yurong, Cao, Jin, Ma, Maode, Li, Hui, Niu, Ben, Li, Fenghua.  2019.  DIAM: Diversified Identity Authentication Mechanism for 5G Multi-Service System. 2019 International Conference on Computing, Networking and Communications (ICNC). :418–424.

The future fifth-generation (5G) mobile communications system has already become a focus around the world. A large number of late-model services and applications including high definition visual communication, internet of vehicles, multimedia interaction, mobile industry automation, and etc, will be added to 5G network platform in the future. Different application services have different security requirements. However, the current user authentication for services and applications: Extensible Authentication Protocol (EAP) suggested by the 3GPP committee, is only a unitary authentication model, which is unable to meet the diversified security requirements of differentiated services. In this paper, we present a new diversified identity management as well as a flexible and composable three-factor authentication mechanism for different applications in 5G multi-service systems. The proposed scheme can provide four identity authentication methods for different security levels by easily splitting or assembling the proposed three-factor authentication mechanism. Without a design of several different authentication protocols, our proposed scheme can improve the efficiency, service of quality and reduce the complexity of the entire 5G multi-service system. Performance analysis results show that our proposed scheme can ensure the security with ideal efficiency.

2020-01-13
Vasilev, Rusen Vasilev, Haka, Aydan Mehmed.  2019.  Enhanced Simulation Framework for Realisation of Mobility in 6LoWPAN Wireless Sensor Networks. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.
The intense incursion of the Internet of Things (IoT) into all areas of modern life has led to a need for a more detailed study of these technologies and their mechanisms of work. It is necessary to study mechanisms in order to improve QoS, security, identifying shortest routes, mobility, etc. This paper proposes an enhanced simulation framework that implements an improved mechanism for prioritising traffic on 6LoWPAN networks and the realisation of micro-mobility.
2019-09-09
Rathi, P. S., Rao, C. M..  2018.  An Enhanced Threshold Based Cryptography with Secrete Sharing and Particle Swarm Optimization for Data Sending in MANET. 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). :87-91.

There are two types of network architectures are presents those are wired network and wireless network. MANETs is one of the examples of wireless network. Each and every network has their own features which make them different from other types of network. Some of the features of MANETs are; infrastructure less network, mobility, dynamic network topology which make it different and more popular from wired network but these features also generate different problems for achieving security due to the absence of centralized authority inside network as well as sending of data due to its mobility features. Achieving security in wired network is little-bit easy compare to MANETs because in wired network user need to just protect main centralized authority for achieving security whereas in MANETs there is no centralized authority available so protecting server in MANETs is difficult compare to wired network. Data sending and receiving process is also easy in wired network but mobility features makes this data sending and receiving process difficult in MANETs. Protecting server or central repository without making use of secrete sharing in wired network will create so many challenges and problem in terms of security. The proposed system makes use of Secrete sharing method to protect server from malicious nodes and `A New particle Swarm Optimization Method for MANETs' (NPSOM) for performing data sending and receiving operation in optimization way. NPSOM technique get equated with the steady particle swarm optimizer (PSO) technique. PSO was essentially designed by Kennedy, Eberhart in 1995. These methods are based upon 4 dissimilar types of parameters. These techniques were encouraged by common performance of animals, some of them are bird assembling and fish tuition, ant colony. The proposed system converts this PSO in the form of MANETs where Particle is nothing but the nodes in the network, Swarm means collection of multiple nodes and Optimization means finding the best and nearer root to reach to destination. Each and every element study about their own previous best solution which they are having with them for the given optimization problem, likewise they see for the groups previous best solution which they got for the same problem and finally they correct its solution depending on these values. This same process gets repeated for finding of the best and optimal solutions value. NPSOM technique, used in proposed system there every element changes its location according to the solution which they got previously and which is poorest as well as their collection's earlier poorest solution for finding best, optimal value. In this proposed system we are concentrating on, sidestepping element's and collections poorest solution which they got before.

2019-01-16
Alamri, N., Chow, C. E., Aljaedi, A., Elgzil, A..  2018.  UFAP: Ultra-fast handoff authentication protocol for wireless mesh networks. 2018 Wireless Days (WD). :1–8.
Wireless mesh networking (WMN) is a new technology aimed to introduce the benefits of using multi-hop and multi-path to the wireless world. However, the absence of a fast and reliable handoff protocol is a major drawback especially in a technology designed to feature high mobility and scalability. We propose a fast and efficient handoff authentication protocol for wireless mesh networks. It is a token-based authentication protocol using pre-distributed parameters. We provide a performance comparison among our protocol, UFAP, and other protocols including EAP-TLS and EAP-PEAP tested in an actual setup. Performance analysis will prove that our proposed handoff authentication protocol is 250 times faster than EAP-PEAP and 500 times faster than EAP-TLS. The significant improvement in performance allows UFAP to provide seamless handoff and continuous operation even for real-time applications which can only tolerate short delays under 50 ms.
2018-06-11
Zhang, X., Li, R., Zhao, H..  2017.  Neighbor-aware based forwarding strategy in NDN-MANET. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :125–129.

Named Data Networking (NDN) is a future Internet architecture, NDN forwarding strategy is a hot research topic in MANET. At present, there are two categories of forwarding strategies in NDN. One is the blind forwarding(BF), the other is the aware forwarding(AF). Data packet return by the way that one came forwarding strategy(DRF) as one of the BF strategy may fail for the interruptions of the path that are caused by the mobility of nodes. Consumer need to wait until the interest packet times out to request the data packet again. To solve the insufficient of DRF, in this paper a Forwarding Strategy, called FN based on Neighbor-aware is proposed for NDN MANET. The node maintains the neighbor information and the request information of neighbor nodes. In the phase of data packet response, in order to improve request satisfaction rate, node specifies the next hop node; Meanwhile, in order to reduce packet loss rate, node assists the last hop node to forward packet to the specific node. The simulation results show that compared with DRF and greedy forwarding(GF) strategy, FN can improve request satisfaction rate when node density is high.

2018-05-09
Ameur, S. B., Smaoui, S., Zarai, F..  2017.  Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). :1314–1321.

NEtwork MObility (NEMO) has gained recently a lot of attention from a number of standardization and researches committees. Although NEMO-Basic Support Protocol (NEMO-BSP) seems to be suitable in the context of the Intelligent Transport Systems (ITS), it has several shortcomings, such as packets loss and lack of security, since it is a host-based mobility scheme. Therefore, in order to improve handoff performance and solve these limitations, schemes adapting Proxy MIPv6 for NEMO have been appeared. But the majorities did not deal with the case of the handover of the Visiting Mobile Nodes (VMN) located below the Mobile Router (MR). Thus, this paper proposes a Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility which ensures strong authentication between entities. To evaluate the security performance of our proposition, we have used the AVISPA/SPAN software which guarantees that our proposed protocol is a safe scheme.

2018-03-19
Dai, W., Win, M. Z..  2017.  On Protecting Location Secrecy. 2017 International Symposium on Wireless Communication Systems (ISWCS). :31–36.

High-accuracy localization is a prerequisite for many wireless applications. To obtain accurate location information, it is often required to share users' positional knowledge and this brings the risk of leaking location information to adversaries during the localization process. This paper develops a theory and algorithms for protecting location secrecy. In particular, we first introduce a location secrecy metric (LSM) for a general measurement model of an eavesdropper. Compared to previous work, the measurement model accounts for parameters such as channel conditions and time offsets in addition to the positions of users. We determine the expression of the LSM for typical scenarios and show how the LSM depends on the capability of an eavesdropper and the quality of the eavesdropper's measurement. Based on the insights gained from the analysis, we consider a case study in wireless localization network and develop an algorithm that diminish the eavesdropper's capabilities by exploiting the reciprocity of channels. Numerical results show that the proposed algorithm can effectively increase the LSM and protect location secrecy.

Qiu, Y., Ma, M..  2017.  A Secure PMIPv6-Based Group Mobility Scheme for 6L0WPAN Networks. 2017 IEEE International Conference on Communications (ICC). :1–6.

The Internet Protocol version 6 (IPv6) over Low Power Wireless Personal Area Networks (6LoWPAN), which is a promising technology to promote the development of the Internet of Things (IoT), has been proposed to connect millions of IP-based sensing devices over the open Internet. To support the mobility of these resource constrained sensing nodes, the Proxy Mobile IPv6 (PMIPv6) has been proposed as the standard. Although the standard has specified some issues of security and mobility in 6LoWPANs, the issues of supporting secure group handovers have not been addressed much by the current existing solutions. In this paper, to reduce the handover latency and signaling cost, an efficient and secure group mobility scheme is designed to support seamless handovers for a group of resource constrained 6LoWPAN devices. With the consideration of the devices holding limited energy capacities, only simple hash and symmetric encryption method is used. The security analysis and the performance evaluation results show that the proposed 6LoWPAN group handover scheme could not only enhance the security functionalities but also support fast authentication for handovers.

2018-02-28
Zhang, N., Sirbu, M. A., Peha, J. M..  2017.  A comparison of migration and multihoming support in IPv6 and XIA. 2017 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.

Mobility and multihoming have become the norm in Internet access, e.g. smartphones with Wi-Fi and LTE, and connected vehicles with LTE and DSRC links that change rapidly. Mobility creates challenges for active session continuity when provider-aggregatable locators are used, while multihoming brings opportunities for improving resiliency and allocative efficiency. This paper proposes a novel migration protocol, in the context of the eXpressive Internet Architecture (XIA), the XIA Migration Protocol. We compare it with Mobile IPv6, with respect to handoff latency and overhead, flow migration support, and defense against spoofing and replay of protocol messages. Handoff latencies of the XIA Migration Protocol and Mobile IPv6 Enhanced Route Optimization are comparable and neither protocol opens up avenues for spoofing or replay attacks. However, XIA requires no mobility anchor point to support client mobility while Mobile IPv6 always depends on a home agent. We show that XIA has significant advantage over IPv6 for multihomed hosts and networks in terms of resiliency, scalability, load balancing and allocative efficiency. IPv6 multihoming solutions either forgo scalability (BGP-based) or sacrifice resiliency (NAT-based), while XIA's fallback-based multihoming provides fault tolerance without a heavy-weight protocol. XIA also allows fine-grained incoming load-balancing and QoS-matching by supporting flow migration. Flow migration is not possible using Mobile IPv6 when a single IPv6 address is associated with multiple flows. From a protocol design and architectural perspective, the key enablers of these benefits are flow-level migration, XIA's DAG-based locators and self-certifying identifiers.

2018-02-21
Mazin, A., Davaslioglu, K., Gitlin, R. D..  2017.  Secure key management for 5G physical layer security. 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON). :1–5.

Next generation 5G wireless networks pose several important security challenges. One fundamental challenge is key management between the two communicating parties. The goal is to establish a common secret key through an unsecured wireless medium. In this paper, we introduce a new physical layer paradigm for secure key exchange between the legitimate communication parties in the presence of a passive eavesdropper. The proposed method ensures secrecy via pre-equalization and guarantees reliable communications by the use of Low Density Parity Check (LDPC) codes. One of the main findings of this paper is to demonstrate through simulations that the diversity order of the eavesdropper will be zero unless the main and eavesdropping channels are almost correlated, while the probability of key mismatch between the legitimate transmitter and receiver will be low. Simulation results demonstrate that the proposed approach achieves very low secret key mismatch between the legitimate users, while ensuring very high error probability at the eavesdropper.