Biblio
With the rapid development of multimedia and short video, there is a growing concern for video copyright protection. Some work has been proposed to add some copyright or fingerprint information to the video to trace the source of the video when it is stolen and protect video copyright. This paper proposes a video watermarking method based on a deep neural network and curriculum learning for watermarking of sliced videos. The first frame of the segmented video is perturbed by an encoder network, which is invisible and can be distinguished by the decoder network. Our model is trained and tested on an online educational video dataset consisting of 2000 different video clips. Experimental results show that our method can successfully discriminate most watermarked and non-watermarked videos with low visual disturbance, which can be achieved even under a relatively high video compression rate(H.264 video compress with CRF 32).
Automatic Identification System (AIS) plays a leading role in maritime navigation, traffic control, local and global maritime situational awareness. Today, the reliable and secure AIS operation is threatened by probable cyber attacks such as imitation of ghost vessels, false distress or security messages, or fake virtual aids-to-navigation. We propose a method for ensuring the authentication and integrity of AIS messages based on the use of the Message Authentication Code scheme and digital watermarking (WM) technology to organize an additional tag transmission channel. The method provides full compatibility with the existing AIS functionality.
Federated learning is a distributed learning technique where machine learning models are trained on client devices in which the local training data resides. The training is coordinated via a central server which is, typically, controlled by the intended owner of the resulting model. By avoiding the need to transport the training data to the central server, federated learning improves privacy and efficiency. But it raises the risk of model theft by clients because the resulting model is available on every client device. Even if the application software used for local training may attempt to prevent direct access to the model, a malicious client may bypass any such restrictions by reverse engineering the application software. Watermarking is a well-known deterrence method against model theft by providing the means for model owners to demonstrate ownership of their models. Several recent deep neural network (DNN) watermarking techniques use backdooring: training the models with additional mislabeled data. Backdooring requires full access to the training data and control of the training process. This is feasible when a single party trains the model in a centralized manner, but not in a federated learning setting where the training process and training data are distributed among several client devices. In this paper, we present WAFFLE, the first approach to watermark DNN models trained using federated learning. It introduces a retraining step at the server after each aggregation of local models into the global model. We show that WAFFLE efficiently embeds a resilient watermark into models incurring only negligible degradation in test accuracy (-0.17%), and does not require access to training data. We also introduce a novel technique to generate the backdoor used as a watermark. It outperforms prior techniques, imposing no communication, and low computational (+3.2%) overhead$^\textrm1$$^\textrm1$\$The research report version of this paper is also available in https://arxiv.org/abs/2008.07298, and the code for reproducing our work can be found at https://github.com/ssg-research/WAFFLE.