Visible to the public Biblio

Found 6023 results

Filters: Keyword is Scalability  [Clear All Filters]
2023-04-14
Deepa, N R, Sivamangai, N M.  2022.  A State-Of-Art Model of Encrypting Medical Image Using DNA Cryptography and Hybrid Chaos Map - 2d Zaslavaski Map: Review. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :190–195.

E-health, smart health and telemedicine are examples of sophisticated healthcare systems. For end-to-end communication, these systems rely on digital medical information. Although this digitizing saves much time, it is open source. As a result, hackers could potentially manipulate the digital medical image as it is being transmitted. It is harder to diagnose an actual disease from a modified digital medical image in medical diagnostics. As a result, ensuring the security and confidentiality of clinical images, as well as reducing the computing time of encryption algorithms, appear to be critical problems for research groups. Conventional approaches are insufficient to ensure high-level medical image security. So this review paper focuses on depicting advanced methods like DNA cryptography and Chaotic Map as advanced techniques that could potentially help in encrypting the digital image at an effective level. This review acknowledges the key accomplishments expressed in the encrypting measures and their success indicators of qualitative and quantitative measurement. This research study also explores the key findings and reasons for finding the lessons learned as a roadmap for impending findings.

ISSN: 2644-1802

Monani, Ravi, Rogers, Brian, Rezaei, Amin, Hedayatipour, Ava.  2022.  Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication. 2022 IEEE Green Energy and Smart System Systems (IGESSC). :1–6.
Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is 9% lesser than Chua’s.
ISSN: 2640-0138
2023-03-31
Garg, Kritika, Sharma, Nidhi, Sharma, Shriya, Monga, Chetna.  2022.  A Survey on Blockchain for Bitcoin and Its Future Perspectives. 2022 3rd International Conference on Computing, Analytics and Networks (ICAN). :1–6.
The term cryptocurrency refers to a digital currency based on cryptographic concepts that have become popular in recent years. Bitcoin is a decentralized cryptocurrency that uses the distributed append-only public database known as blockchain to record every transaction. The incentive-compatible Proof-of-Work (PoW)-centered decentralized consensus procedure, which is upheld by the network's nodes known as miners, is essential to the safety of bitcoin. Interest in Bitcoin appears to be growing as the market continues to rise. Bitcoins and Blockchains have identical fundamental ideas, which are briefly discussed in this paper. Various studies discuss blockchain as a revolutionary innovation that has various applications, spanning from bitcoins to smart contracts, and also about it being a solution to many issues. Furthermore, many papers are reviewed here that not only look at Bitcoin’s fundamental underpinning technologies, such as Mixing and the Bitcoin Wallets but also at the flaws in it.
Grundmann, Matthias, Baumstark, Max, Hartenstein, Hannes.  2022.  On the Peer Degree Distribution of the Bitcoin P2P Network. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–5.
A recent spam wave of IP addresses in the Bitcoin P2P network allowed us to estimate the degree distribution of reachable peers. The resulting distribution indicates that about half of the reachable peers run with Bitcoin Core’s default setting of a maximum of 125 concurrent connections and nearly all connection slots are taken. We validate this result empirically. We use our observations of the spam wave to group IP addresses that belong to the same peer. By doing this grouping, we improve on previous measurements of the number of reachable peers and show that simply counting IP addresses overestimates the number of reachable peers by 15 %. We revalidate previous work by using our observations to estimate the number of unreachable peers.
Barbàra, Fadi, Schifanella, Claudio.  2022.  BxTB: cross-chain exchanges of bitcoins for all Bitcoin wrapped tokens. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :143–150.
While it is possible to exchange tokens whose smart contracts are on the same blockchain, cross-exchanging bitcoins for a Bitcoin wrapped token is still cumbersome. In particular, current methods of exchange are still custodial and perform privacy-threatening controls on the users in order to operate. To solve this problem we present BxTB: cross-chain exchanges of bitcoins for any Bitcoin wrapped tokens. BxTB lets users achieve that by bypassing the mint-and-burn paradigm of current wrapped tokens and cross-exchanging already minted tokens in a P2P way. Instead of relaying on HTLCs and the overhead of communication and slowness due to time-locks, we leverage Stateless SPVs, i.e. proof-of-inclusion of transactions in the Bitcoin chain validated through a smart contract deployed on the other blockchain. Furthermore, since this primitive has not been introduced in the academic literature yet, we formally introduce it and we prove its security.
Chen, Xiaofeng, Wei, Zunbo, Jia, Xiangjuan, Zheng, Peiyu, Han, Mengwei, Yang, Xiaohu.  2022.  Current Status and Prospects of Blockchain Security Standardization. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :24–29.
In recent years, blockchain technology has become one of the key technical innovation fields in the world. From the simple Bitcoin that can only be transferred at first to the blockchain application ecology that is now blooming, blockchain is gradually building a credible internet of value. However, with the continuous development and application of blockchain, even the blockchain based on cryptography is facing a series of network security problems and has caused great property losses to participants. Therefore, studying blockchain security and accelerating standardization of blockchain security have become the top priority to ensure the orderly and healthy development of blockchain technology. This paper briefly introduces the scope of blockchain security from the perspective of network security, sorts out some existing standards related to blockchain security, and gives some suggestions to promote the development and application of blockchain security standardization.
ISSN: 2693-8928
Kowalski, Timothy, Chowdhury, Md Minhaz, Latif, Shadman, Kambhampaty, Krishna.  2022.  Bitcoin: Cryptographic Algorithms, Security Vulnerabilities and Mitigations. 2022 IEEE International Conference on Electro Information Technology (eIT). :544–549.
Blockchain technology has made it possible to store and send digital currencies. Bitcoin wallets and marketplaces have made it easy for nontechnical users to use the protocol. Since its inception, the price of Bitcoin is going up and the number of nodes in the network has increased drastically. The increasing popularity of Bitcoin has made exchanges and individual nodes a target for an attack. Understanding the Bitcoin protocol better helps security engineers to harden the network and helps regular users secure their hot wallets. In this paper, Bitcoin protocol is presented with description of the mining process which secures transactions. In addition, the Bitcoin algorithms and their security are described with potential vulnerabilities in the protocol and potential exploits for attackers. Finally, we propose some security solutions to help mitigate attacks on Bitcoin exchanges and hot wallets.
ISSN: 2154-0373
Winarno, Agus, Angraini, Novita, Hardani, Muhammad Salmon, Harwahyu, Ruki, Sari, Riri Fitri.  2022.  Evaluation of Decision Matrix, Hash Rate and Attacker Regions Effects in Bitcoin Network Securities. 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). :72–77.
Bitcoin is a famously decentralized cryptocurrency. Bitcoin is excellent because it is a digital currency that provides convenience and security in transactions. Transaction security in Bitcoin uses a consensus involving a distributed system, the security of this system generates a hash sequence with a Proof of Work (PoW) mechanism. However, in its implementation, various attacks appear that are used to generate profits from the existing system. Attackers can use various types of methods to get an unfair portion of the mining income. Such attacks are commonly referred to as Mining attacks. Among which the famous is the Selfish Mining attack. In this study, we simulate the effect of changing decision matrix, attacker region, attacker hash rate on selfish miner attacks by using the opensource NS3 platform. The experiment aims to see the effect of using 1%, 10%, and 20% decision matrices with different attacker regions and different attacker hash rates on Bitcoin selfish mining income. The result of this study shows that regional North America and Europe have the advantage in doing selfish mining attacks. This advantage is also supported by increasing the decision matrix from 1%, 10%, 20%. The highest attacker income, when using decision matrix 20% in North America using 16 nodes on 0.3 hash rate with income 129 BTC. For the hash rate, the best result for a selfish mining attack is between 27% to 30% hash rate.
Huang, Dapeng, Chen, Haoran, Wang, Kai, Chen, Chen, Han, Weili.  2022.  A Traceability Method for Bitcoin Transactions Based on Gateway Network Traffic Analysis. 2022 International Conference on Networking and Network Applications (NaNA). :176–183.
Cryptocurrencies like Bitcoin have become a popular weapon for illegal activities. They have the characteristics of decentralization and anonymity, which can effectively avoid the supervision of government departments. How to de-anonymize Bitcoin transactions is a crucial issue for regulatory and judicial investigation departments to supervise and combat crimes involving Bitcoin effectively. This paper aims to de-anonymize Bitcoin transactions and present a Bitcoin transaction traceability method based on Bitcoin network traffic analysis. According to the characteristics of the physical network that the Bitcoin network relies on, the Bitcoin network traffic is obtained at the physical convergence point of the local Bitcoin network. By analyzing the collected network traffic data, we realize the traceability of the input address of Bitcoin transactions and test the scheme in the distributed Bitcoin network environment. The experimental results show that this traceability mechanism is suitable for nodes connected to the Bitcoin network (except for VPN, Tor, etc.), and can obtain 47.5% recall rate and 70.4% precision rate, which are promising in practice.
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
Fan, Wenjun, Wuthier, Simeon, Hong, Hsiang-Jen, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2022.  The Security Investigation of Ban Score and Misbehavior Tracking in Bitcoin Network. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :191–201.
Bitcoin P2P networking is especially vulnerable to networking threats because it is permissionless and does not have the security protections based on the trust in identities, which enables the attackers to manipulate the identities for Sybil and spoofing attacks. The Bitcoin node keeps track of its peer’s networking misbehaviors through ban scores. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS (BM-DoS) attacks but also vulnerable to the Defamation attack as the network adversary can exploit the ban score to defame innocent peers. To defend against these threats, we design an anomaly detection approach that is effective, lightweight, and tailored to the networking threats exploiting Bitcoin’s ban-score mechanism. We prototype our threat discoveries against a real-world Bitcoin node connected to the Bitcoin Mainnet and conduct experiments based on the prototype implementation. The experimental results show that the attacks have devastating impacts on the targeted victim while being cost-effective on the attacker side. For example, an attacker can ban a peer in two milliseconds and reduce the victim’s mining rate by hundreds of thousands of hash computations per second. Furthermore, to counter the threats, we empirically validate our detection countermeasure’s effectiveness and performances against the BM-DoS and Defamation attacks.
ISSN: 2575-8411
Tarmissi, Khaled, Shalan, Atef, Al Shahrani, Abdullah, Alsulamy, Rayan, Alotaibi, Saud S., Al-Shareef, Sarah.  2022.  Mitigating Security Threats of Bitcoin Network by Reducing Message Broadcasts During Transaction Dissemination. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). :772–777.
Propagation delay in blockchain networks is a major impairment of message transmission and validation in the bitcoin network. The transaction delay caused by message propagation across long network chains can cause significant threats to the bitcoin network integrity by allowing miners to find blocks during the message consensus process. Potential threats of slow transaction dissemination include double-spending, partitions, and eclipse attacks. In this paper, we propose a method for minimizing propagation delay by reducing non-compulsory message broadcasts during transaction dissemination in the underlying blockchain network. Our method will decrease the propagation delay in the bitcoin network and consequently mitigate the security threats based on message dissemination delay. Our results show improvement in the delay time with more effect on networks with a large number of nodes.
ISSN: 2472-7555
Huang, Jun, Wang, Zerui, Li, Ding, Liu, Yan.  2022.  The Analysis and Development of an XAI Process on Feature Contribution Explanation. 2022 IEEE International Conference on Big Data (Big Data). :5039–5048.
Explainable Artificial Intelligence (XAI) research focuses on effective explanation techniques to understand and build AI models with trust, reliability, safety, and fairness. Feature importance explanation summarizes feature contributions for end-users to make model decisions. However, XAI methods may produce varied summaries that lead to further analysis to evaluate the consistency across multiple XAI methods on the same model and data set. This paper defines metrics to measure the consistency of feature contribution explanation summaries under feature importance order and saliency map. Driven by these consistency metrics, we develop an XAI process oriented on the XAI criterion of feature importance, which performs a systematical selection of XAI techniques and evaluation of explanation consistency. We demonstrate the process development involving twelve XAI methods on three topics, including a search ranking system, code vulnerability detection and image classification. Our contribution is a practical and systematic process with defined consistency metrics to produce rigorous feature contribution explanations.
Chapman, Jon, Venugopalan, Hari.  2022.  Open Source Software Computed Risk Framework. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). :172–175.
The increased dissemination of open source software to a broader audience has led to a proportional increase in the dissemination of vulnerabilities. These vulnerabilities are introduced by developers, some intentionally or negligently. In this paper, we work to quantity the relative risk that a given developer represents to a software project. We propose using empirical software engineering based analysis on the vast data made available by GitHub to create a Developer Risk Score (DRS) for prolific contributors on GitHub. The DRS can then be aggregated across a project as a derived vulnerability assessment, we call this the Computational Vulnerability Assessment Score (CVAS). The CVAS represents the correlation between the Developer Risk score across projects and vulnerabilities attributed to those projects. We believe this to be a contribution in trying to quantity risk introduced by specific developers across open source projects. Both of the risk scores, those for contributors and projects, are derived from an amalgamation of data, both from GitHub and outside GitHub. We seek to provide this risk metric as a force multiplier for the project maintainers that are responsible for reviewing code contributions. We hope this will lead to a reduction in the number of introduced vulnerabilities for projects in the Open Source ecosystem.
ISSN: 2766-3639
Yang, Jing, Yang, Yibiao, Sun, Maolin, Wen, Ming, Zhou, Yuming, Jin, Hai.  2022.  Isolating Compiler Optimization Faults via Differentiating Finer-grained Options. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :481–491.

Code optimization is an essential feature for compilers and almost all software products are released by compiler optimizations. Consequently, bugs in code optimization will inevitably cast significant impact on the correctness of software systems. Locating optimization bugs in compilers is challenging as compilers typically support a large amount of optimization configurations. Although prior studies have proposed to locate compiler bugs via generating witness test programs, they are still time-consuming and not effective enough. To address such limitations, we propose an automatic bug localization approach, ODFL, for locating compiler optimization bugs via differentiating finer-grained options in this study. Specifically, we first disable the fine-grained options that are enabled by default under the bug-triggering optimization levels independently to obtain bug-free and bug-related fine-grained options. We then configure several effective passing and failing optimization sequences based on such fine-grained options to obtain multiple failing and passing compiler coverage. Finally, such generated coverage information can be utilized via Spectrum-Based Fault Localization formulae to rank the suspicious compiler files. We run ODFL on 60 buggy GCC compilers from an existing benchmark. The experimental results show that ODFL significantly outperforms the state-of-the-art compiler bug isolation approach RecBi in terms of all the evaluated metrics, demonstrating the effectiveness of ODFL. In addition, ODFL is much more efficient than RecBi as it can save more than 88% of the time for locating bugs on average.

ISSN: 1534-5351

Hu, Zhiyuan, Shi, Linghang, Chen, Huijun, Li, Chao, Lu, Jinghui.  2022.  Security Assessment of Android-Based Mobile Terminals. 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC). :279–284.
Mobile terminals especially smartphones are changing people's work and life style. For example, mobile payments are experiencing rapid growth as consumers use mobile terminals as part of lifestyles. However, security is a big challenge for mobile application services. In order to reduce security risks, mobile terminal security assessment should be conducted before providing application services. An approach of comprehensive security assessment is proposed in this paper by defining security metrics with the corresponding scores and determining the relative weights of security metrics based on the analytical hierarchy process (AHP). Overall security assessment of Android-based mobile terminals is implemented for mobile payment services with payment fraud detection accuracy of 89%, which shows that the proposed approach of security assessment is reasonable.
ISSN: 1882-5621
Islam, Raisa, Hossen, Mohammad Sahinur, Shin, Dongwan.  2022.  A Mapping Study on Privacy Attacks in Big Data and IoT. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1158–1163.
Application domains like big data and IoT require a lot of user data collected and analyzed to extract useful information, and those data might include user's sensitive and personal information. Hence, it is strongly required to ensure the privacy of user data before releasing them in the public space. Since the fields of IoT and big data are constantly evolving with new types of privacy attacks and prevention mechanisms, there is an urgent need for new research and surveys to develop an overview of the state-of-art. We conducted a systematic mapping study on selected papers related to user privacy in IoT and big data, published between 2010 to 2021. This study focuses on identifying the main privacy objectives, attacks and measures taken to prevent the attacks in the two application domains. Additionally, a visualized classification of the existing attacks is presented along with privacy metrics to draw similarities and dissimilarities among different attacks.
ISSN: 2162-1241
Fidalgo, Pedro, Lopes, Rui J., Faloutsos, Christos.  2022.  Star-Bridge: a topological multidimensional subgraph analysis to detect fraudulent nodes and rings in telecom networks. 2022 IEEE International Conference on Big Data (Big Data). :2239–2242.
Fraud mechanisms have evolved from isolated actions performed by single individuals to complex criminal networks. This paper aims to contribute to the identification of potentially relevant nodes in fraud networks. Whilst traditional methods for fraud detection rely on identifying abnormal patterns, this paper proposes STARBRIDGE: a new linear and scalable, ranked out, parameter free method to identify fraudulent nodes and rings based on Bridging, Influence and Control metrics. This is applied to the telecommunications domain where fraudulent nodes form a star-bridge-star pattern. Over 75% of nodes involved in fraud denote control, bridging centrality and doubled the influence scores, when compared to non-fraudulent nodes in the same role, stars and bridges being chief positions.
Alzarog, Jellalah, Almhishi, Abdalwart, Alsunousi, Abubaker, Abulifa, Tareg Abubaker, Eltarjaman, Wisam, Sati, Salem Omar.  2022.  POX Controller Evaluation Based On Tree Topology For Data Centers. 2022 International Conference on Data Analytics for Business and Industry (ICDABI). :67–71.
The Software Defined Networking (SDN) is a solution for Data Center Networks (DCN). This solution offers a centralized control that helps to simplify the management and reduce the big data issues of storage management and data analysis. This paper investigates the performance of deploying an SDN controller in DCN. The paper considers the network topology with a different number of hosts using the Mininet emulator. The paper evaluates the performance of DCN based on Python SDN controllers with a different number of hosts. This evaluation compares POX and RYU controllers as DCN solutions using the throughput, delay, overhead, and convergence time. The results show that the POX outperforms the RYU controller and is the best choice for DCN.
Xu, Zichuan, Ren, Wenhao, Liang, Weifa, Xu, Wenzheng, Xia, Qiufen, Zhou, Pan, Li, Mingchu.  2022.  Schedule or Wait: Age-Minimization for IoT Big Data Processing in MEC via Online Learning. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :1809–1818.
The age of data (AoD) is identified as one of the most novel and important metrics to measure the quality of big data analytics for Internet-of-Things (IoT) applications. Meanwhile, mobile edge computing (MEC) is envisioned as an enabling technology to minimize the AoD of IoT applications by processing the data in edge servers close to IoT devices. In this paper, we study the AoD minimization problem for IoT big data processing in MEC networks. We first propose an exact solution for the problem by formulating it as an Integer Linear Program (ILP). We then propose an efficient heuristic for the offline AoD minimization problem. We also devise an approximation algorithm with a provable approximation ratio for a special case of the problem, by leveraging the parametric rounding technique. We thirdly develop an online learning algorithm with a bounded regret for the online AoD minimization problem under dynamic arrivals of IoT requests and uncertain network delay assumptions, by adopting the Multi-Armed Bandit (MAB) technique. We finally evaluate the performance of the proposed algorithms by extensive simulations and implementations in a real test-bed. Results show that the proposed algorithms outperform existing approaches by reducing the AoD around 10%.
ISSN: 2641-9874
Khelifi, Hakima, Belouahri, Amani.  2022.  The Impact of Big Data Analytics on Traffic Prediction. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1–6.
The Internet of Vehicles (IoVs) performs the rapid expansion of connected devices. This massive number of devices is constantly generating a massive and near-real-time data stream for numerous applications, which is known as big data. Analyzing such big data to find, predict, and control decisions is a critical solution for IoVs to enhance service quality and experience. Thus, the main goal of this paper is to study the impact of big data analytics on traffic prediction in IoVs. In which we have used big data analytics steps to predict the traffic flow, and based on different deep neural models such as LSTM, CNN-LSTM, and GRU. The models are validated using evaluation metrics, MAE, MSE, RMSE, and R2. Hence, a case study based on a real-world road is used to implement and test the efficiency of the traffic prediction models.
Shi, Huan, Hui, Bo, Hu, Biao, Gu, RongJie.  2022.  Construction of Intelligent Emergency Response Technology System Based on Big Data Technology. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :59–62.
This paper analyzes the problems existing in the existing emergency management technology system in China from various perspectives, and designs the construction of intelligent emergency system in combination with the development of new generation of Internet of Things, big data, cloud computing and artificial intelligence technology. The overall design is based on scientific and technological innovation to lead the reform of emergency management mechanism and process reengineering to build an intelligent emergency technology system characterized by "holographic monitoring, early warning, intelligent research and accurate disposal". To build an intelligent emergency management system that integrates intelligent monitoring and early warning, intelligent emergency disposal, efficient rehabilitation, improvement of emergency standards, safety and operation and maintenance construction.
Lu, Xiuyun, Zhao, Wenxing, Zhu, Yuquan.  2022.  Research on Network Security Protection System Based on Computer Big Data Era. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1487–1490.
This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edge-cloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining end-address hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
Zhang, Hongjun, Cheng, Shuyan, Cai, Qingyuan, Jiang, Xiao.  2022.  Privacy security protection based on data life cycle. 2022 World Automation Congress (WAC). :433–436.
Large capacity, fast-paced, diversified and high-value data are becoming a hotbed of data processing and research. Privacy security protection based on data life cycle is a method to protect privacy. It is used to protect the confidentiality, integrity and availability of personal data and prevent unauthorized access or use. The main advantage of using this method is that it can fully control all aspects related to the information system and its users. With the opening of the cloud, attackers use the cloud to recalculate and analyze big data that may infringe on others' privacy. Privacy protection based on data life cycle is a means of privacy protection based on the whole process of data production, collection, storage and use. This approach involves all stages from the creation of personal information by individuals (e.g. by filling out forms online or at work) to destruction after use for the intended purpose (e.g. deleting records). Privacy security based on the data life cycle ensures that any personal information collected is used only for the purpose of initial collection and destroyed as soon as possible.
ISSN: 2154-4824
Soderi, Mirco, Kamath, Vignesh, Breslin, John G..  2022.  A Demo of a Software Platform for Ubiquitous Big Data Engineering, Visualization, and Analytics, via Reconfigurable Micro-Services, in Smart Factories. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :1–3.
Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
ISSN: 2693-8340