Visible to the public Biblio

Filters: Keyword is IoT networks  [Clear All Filters]
2022-01-10
Abdullah, Rezhna M., Abdullah, Syamnd M., Abdullah, Saman M..  2021.  Neighborhood Component Analysis and Artificial Neural Network for DDoS Attack Detection over IoT Networks. 2021 7th International Engineering Conference ``Research Innovation amid Global Pandemic" (IEC). :1–6.
Recently, modern networks have been made up of connections of small devices that have less memory, small CPU capability, and limited resources. Such networks apparently known as Internet of Things networks. Devices in such network promising high standards of live for human, however, they increase the size of threats lead to bring more risks to network security. One of the most popular threats against such networks is known as Distributed Denial of Service (DDoS). Reports from security solution providers show that number of such attacks are in increase considerably. Therefore, more researches on detecting the DDoS attacks are necessary. Such works need monitoring network packets that move over Internet and networks and, through some intelligent techniques, monitored packets could be classified as benign or as DDoS attack. This work focuses on combining Neighborhood Component Analysis and Artificial Neural Network-Backpropagation to classify and identify packets as forward by attackers or as come from authorized and illegible users. This work utilized the activities of four type of the network protocols to distinguish five types of attacks from benign packets. The proposed model shows the ability of classifying packets to normal or to attack classes with an accuracy of 99.4%.
2020-10-29
Kahla, Mostafa, Azab, Mohamed, Mansour, Ahmed.  2018.  Secure, Resilient, and Self-Configuring Fog Architecture for Untrustworthy IoT Environments. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :49—54.

The extensive increase in the number of IoT devices and the massive data generated and sent to the cloud hinder the cloud abilities to handle it. Further, some IoT devices are latency-sensitive. Such sensitivity makes it harder for far clouds to handle the IoT needs in a timely manner. A new technology named "Fog computing" has emerged as a solution to such problems. Fog computing relies on close by computational devices to handle the conventional cloud load. However, Fog computing introduced additional problems related to the trustworthiness and safety of such devices. Unfortunately, the suggested architectures did not consider such problem. In this paper we present a novel self-configuring fog architecture to support IoT networks with security and trust in mind. We realize the concept of Moving-target defense by mobilizing the applications inside the fog using live migrations. Performance evaluations using a benchmark for mobilized applications showed that the added overhead of live migrations is very small making it deployable in real scenarios. Finally, we presented a mathematical model to estimate the survival probabilities of both static and mobile applications within the fog. Moreover, this work can be extended to other systems such as mobile ad-hoc networks (MANETS) or in vehicular cloud computing (VCC).

2020-09-21
Pudukotai Dinakarrao, Sai Manoj, Sayadi, Hossein, Makrani, Hosein Mohammadi, Nowzari, Cameron, Rafatirad, Setareh, Homayoun, Houman.  2019.  Lightweight Node-level Malware Detection and Network-level Malware Confinement in IoT Networks. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :776–781.
The sheer size of IoT networks being deployed today presents an "attack surface" and poses significant security risks at a scale never before encountered. In other words, a single device/node in a network that becomes infected with malware has the potential to spread malware across the network, eventually ceasing the network functionality. Simply detecting and quarantining the malware in IoT networks does not guarantee to prevent malware propagation. On the other hand, use of traditional control theory for malware confinement is not effective, as most of the existing works do not consider real-time malware control strategies that can be implemented using uncertain infection information of the nodes in the network or have the containment problem decoupled from network performance. In this work, we propose a two-pronged approach, where a runtime malware detector (HaRM) that employs Hardware Performance Counter (HPC) values to detect the malware and benign applications is devised. This information is fed during runtime to a stochastic model predictive controller to confine the malware propagation without hampering the network performance. With the proposed solution, a runtime malware detection accuracy of 92.21% with a runtime of 10ns is achieved, which is an order of magnitude faster than existing malware detection solutions. Synthesizing this output with the model predictive containment strategy lead to achieving an average network throughput of nearly 200% of that of IoT networks without any embedded defense.
2020-09-04
Laguduva, Vishalini, Islam, Sheikh Ariful, Aakur, Sathyanarayanan, Katkoori, Srinivas, Karam, Robert.  2019.  Machine Learning Based IoT Edge Node Security Attack and Countermeasures. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :670—675.
Advances in technology have enabled tremendous progress in the development of a highly connected ecosystem of ubiquitous computing devices collectively called the Internet of Things (IoT). Ensuring the security of IoT devices is a high priority due to the sensitive nature of the collected data. Physically Unclonable Functions (PUFs) have emerged as critical hardware primitive for ensuring the security of IoT nodes. Malicious modeling of PUF architectures has proven to be difficult due to the inherently stochastic nature of PUF architectures. Extant approaches to malicious PUF modeling assume that a priori knowledge and physical access to the PUF architecture is available for malicious attack on the IoT node. However, many IoT networks make the underlying assumption that the PUF architecture is sufficiently tamper-proof, both physically and mathematically. In this work, we show that knowledge of the underlying PUF structure is not necessary to clone a PUF. We present a novel non-invasive, architecture independent, machine learning attack for strong PUF designs with a cloning accuracy of 93.5% and improvements of up to 48.31% over an alternative, two-stage brute force attack model. We also propose a machine-learning based countermeasure, discriminator, which can distinguish cloned PUF devices and authentic PUFs with an average accuracy of 96.01%. The proposed discriminator can be used for rapidly authenticating millions of IoT nodes remotely from the cloud server.
2020-07-30
Reddy, Vijender Busi, Negi, Atul, Venkataraman, S, Venkataraman, V Raghu.  2019.  A Similarity based Trust Model to Mitigate Badmouthing Attacks in Internet of Things (IoT). 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :278—282.

In Internet of Things (IoT) each object is addressable, trackable and accessible on the Internet. To be useful, objects in IoT co-operate and exchange information. IoT networks are open, anonymous, dynamic in nature so, a malicious object may enter into the network and disrupt the network. Trust models have been proposed to identify malicious objects and to improve the reliability of the network. Recommendations in trust computation are the basis of trust models. Due to this, trust models are vulnerable to bad mouthing and collusion attacks. In this paper, we propose a similarity model to mitigate badmouthing and collusion attacks and show that proposed method efficiently removes the impact of malicious recommendations in trust computation.

2020-06-29
Wehbi, Khadijeh, Hong, Liang, Al-salah, Tulha, Bhutta, Adeel A.  2019.  A Survey on Machine Learning Based Detection on DDoS Attacks for IoT Systems. 2019 SoutheastCon. :1–6.
Internet of Things (IoT) is transforming the way we live today, improving the quality of living standard and growing the world economy by having smart devices around us making decisions and performing our daily tasks and chores. However, securing the IoT system from malicious attacks is a very challenging task. Some of the most common malicious attacks are Denial of service (DoS), and Distributed Denial of service (DDoS) attacks, which have been causing major security threats to all networks and specifically to limited resource IoT devices. As security will always be a primary factor for enabling most IoT applications, developing a comprehensive detection method that effectively defends against DDoS attacks and can provide 100% detection for DDoS attacks in IoT is a primary goal for the future of IoT. The development of such a method requires a deep understanding of the methods that have been used thus far in the detection of DDoS attacks in the IoT environment. In our survey, we try to emphasize some of the most recent Machine Learning (ML) approaches developed for the detection of DDoS attacks in IoT networks along with their advantage and disadvantages. Comparison between the performances of selected approaches is also provided.
2020-06-26
Maria Verzegnassi, Enrico Giulio, Tountas, Konstantinos, Pados, Dimitris A., Cuomo, Francesca.  2019.  Data Conformity Evaluation: A Novel Approach for IoT Security. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :842—846.

We consider the problem of attack detection for IoT networks based only on passively collected network parameters. For the first time in the literature, we develop a blind attack detection method based on data conformity evaluation. Network parameters collected passively, are converted to their conformity values through iterative projections on refined L1-norm tensor subspaces. We demonstrate our algorithmic development in a case study for a simulated star topology network. Type of attack, affected devices, as well as, attack time frame can be easily identified.

2020-06-19
Haefner, Kyle, Ray, Indrakshi.  2019.  ComplexIoT: Behavior-Based Trust For IoT Networks. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :56—65.

This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.

2020-06-01
Kapoor, Chavi.  2019.  Routing Table Management using Dynamic Information with Routing Around Connectivity Holes (RACH) for IoT Networks. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :174—177.

The internet of things (IoT) is the popular wireless network for data collection applications. The IoT networks are deployed in dense or sparse architectures, out of which the dense networks are vastly popular as these are capable of gathering the huge volumes of data. The collected data is analyzed using the historical or continuous analytical systems, which uses the back testing or time-series analytics to observe the desired patterns from the target data. The lost or bad interval data always carries the high probability to misguide the analysis reports. The data is lost due to a variety of reasons, out of which the most popular ones are associated with the node failures and connectivity holes, which occurs due to physical damage, software malfunctioning, blackhole/wormhole attacks, route poisoning, etc. In this paper, the work is carried on the new routing scheme for the IoTs to avoid the connectivity holes, which analyzes the activity of wireless nodes and takes the appropriate actions when required.

Ansari, Abdul Malik, Hussain, Muzzammil.  2018.  Middleware Based Node Authentication Framework for IoT Networks. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :31–35.
Security and protection are among the most squeezing worries that have developed with the Internet. As systems extended and turned out to be more open, security hones moved to guarantee insurance of the consistently developing Internet, its clients, and information. Today, the Internet of Things (IoT) is rising as another sort of system that associates everything to everybody, all over. Subsequently, the edge of resistance for security and protection moves toward becoming smaller on the grounds that a break may prompt vast scale irreversible harm. One element that eases the security concerns is validation. While diverse confirmation plans are utilized as a part of vertical system storehouses, a typical personality and validation plot is expected to address the heterogeneity in IoT and to coordinate the distinctive conventions exhibit in IoT. In this paper, a light weight secure framework is proposed. The proposed framework is analyzed for performance with security mechanism and found to be better over critical parameters.
Surnin, Oleg, Hussain, Fatima, Hussain, Rasheed, Ostrovskaya, Svetlana, Polovinkin, Andrey, Lee, JooYoung, Fernando, Xavier.  2019.  Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. 2019 International Conference on Computing, Networking and Communications (ICNC). :191–196.
With the emergence of the Internet of Things (IoT) and the increasing number of resource-constrained interconnected smart devices, there is a noticeable increase in the number of cyber security crimes. In the face of the possible attacks on IoT networks such as network intrusion, denial of service, spoofing and so on, there is a need to develop efficient methods to locate vulnerabilities and mitigate attacks in IoT networks. Without loss of generality, we consider only intrusion-related threats to IoT. A honeypot is a system used to understand the potential dynamic threats and act as a proactive measure to detect any intrusion into the network. It is used as a trap for intruders to control unauthorized access to the network by analyzing malicious traffic. However, a sophisticated attacker can detect the presence of a honeypot and abort the intrusion mission. Therefore it is essential for honeypots to be undetectable. In this paper, we study and analyze possible techniques for SSH and telnet honeypot detection. Moreover, we propose a new methodology for probabilistic estimation of honeypot detection and an automated software implemented this methodology.
2020-04-10
Ebrahimi, Najme, Yektakhah, Behzad, Sarabandi, Kamal, Kim, Hun Seok, Wentzloff, David, Blaauw, David.  2019.  A Novel Physical Layer Security Technique Using Master-Slave Full Duplex Communication. 2019 IEEE MTT-S International Microwave Symposium (IMS). :1096—1099.
In this work we present a novel technique for physical layer security in the Internet-of-Things (IoT) networks. In the proposed architecture, each IoT node generates a phase-modulated random key/data and transmits it to a master node in the presence of an eavesdropper, referred to as Eve. The master node, simultaneously, broadcasts a high power signal using an omni-directional antenna, which is received as interference by Eve. This interference masks the generated key by the IoT node and will result in a higher bit-error rate in the data received by Eve. The two legitimate intended nodes communicate in a full-duplex manner and, consequently, subtract their transmitted signals, as a known reference, from the received signal (self-interference cancellation). We compare our proposed method with a conventional approach to physical layer security based on directional antennas. In particular, we show, using theoretical and measurement results, that our proposed approach provides significantly better security measures, in terms bit error rate (BER) at Eve's location. Also, it is proven that in our novel system, the possible eavesdropping region, defined by the region with BER \textbackslashtextless; 10-1, is always smaller than the reliable communication region with BER \textbackslashtextless; 10-3.
2020-03-23
Li, Min, Tang, Helen, Wang, Xianbin.  2019.  Mitigating Routing Misbehavior using Blockchain-Based Distributed Reputation Management System for IoT Networks. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
With the rapid proliferation of Internet of Thing (IoT) devices, many security challenges could be introduced at low-end routers. Misbehaving routers affect the availability of the networks by dropping packets selectively and rejecting data forwarding services. Although existing Reputation Management (RM) systems are useful in identifying misbehaving routers, the centralized nature of the RM center has the risk of one-point failure. The emerging blockchain techniques, with the inherent decentralized consensus mechanism, provide a promising method to reduce this one-point failure risk. By adopting the distributed consensus mechanism, we propose a blockchain-based reputation management system in IoT networks to overcome the limitation of centralized router RM systems. The proposed solution utilizes the blockchain technique as a decentralized database to store router reports for calculating reputation of each router. With the proposed reputation calculation mechanism, the reliability of each router would be evaluated, and the malicious misbehaving routers with low reputations will be blacklisted and get isolated. More importantly, we develop an optimized group mining process for blockchain technique in order to improve the efficiency of block generation and reduce the resource consumption. The simulation results validate the distributed blockchain-based RM system in terms of attacks detection and system convergence performance, and the comparison result of the proposed group mining process with existing blockchain models illustrates the applicability and feasibility of the proposed works.
2020-02-24
Brotsis, Sotirios, Kolokotronis, Nicholas, Limniotis, Konstantinos, Shiaeles, Stavros, Kavallieros, Dimitris, Bellini, Emanuele, Pavué, Clément.  2019.  Blockchain Solutions for Forensic Evidence Preservation in IoT Environments. 2019 IEEE Conference on Network Softwarization (NetSoft). :110–114.
The technological evolution brought by the Internet of things (IoT) comes with new forms of cyber-attacks exploiting the complexity and heterogeneity of IoT networks, as well as, the existence of many vulnerabilities in IoT devices. The detection of compromised devices, as well as the collection and preservation of evidence regarding alleged malicious behavior in IoT networks, emerge as areas of high priority. This paper presents a blockchain-based solution, which is designed for the smart home domain, dealing with the collection and preservation of digital forensic evidence. The system utilizes a private forensic evidence database, where the captured evidence is stored, along with a permissioned blockchain that allows providing security services like integrity, authentication, and non-repudiation, so that the evidence can be used in a court of law. The blockchain stores evidences' metadata, which are critical for providing the aforementioned services, and interacts via smart contracts with the different entities involved in an investigation process, including Internet service providers, law enforcement agencies and prosecutors. A high-level architecture of the blockchain-based solution is presented that allows tackling the unique challenges posed by the need for digitally handling forensic evidence collected from IoT networks.
2020-02-17
Ullah, Imtiaz, Mahmoud, Qusay H..  2019.  A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.
In this paper we propose a two-level hybrid anomalous activity detection model for intrusion detection in IoT networks. The level-1 model uses flow-based anomaly detection, which is capable of classifying the network traffic as normal or anomalous. The flow-based features are extracted from the CICIDS2017 and UNSW-15 datasets. If an anomaly activity is detected then the flow is forwarded to the level-2 model to find the category of the anomaly by deeply examining the contents of the packet. The level-2 model uses Recursive Feature Elimination (RFE) to select significant features and Synthetic Minority Over-Sampling Technique (SMOTE) for oversampling and Edited Nearest Neighbors (ENN) for cleaning the CICIDS2017 and UNSW-15 datasets. Our proposed model precision, recall and F score for level-1 were measured 100% for the CICIDS2017 dataset and 99% for the UNSW-15 dataset, while the level-2 model precision, recall, and F score were measured at 100 % for the CICIDS2017 dataset and 97 % for the UNSW-15 dataset. The predictor we introduce in this paper provides a solid framework for the development of malicious activity detection in IoT networks.
2020-01-20
Li, Peisong, Zhang, Ying.  2019.  A Novel Intrusion Detection Method for Internet of Things. 2019 Chinese Control And Decision Conference (CCDC). :4761–4765.

Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.

2019-10-30
Hong, James, Levy, Amit, Riliskis, Laurynas, Levis, Philip.  2018.  Don't Talk Unless I Say So! Securing the Internet of Things with Default-Off Networking. 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI). :117-128.

The Internet of Things (IoT) is changing the way we interact with everyday objects. "Smart" devices will reduce energy use, keep our homes safe, and improve our health. However, as recent attacks have shown, these devices also create tremendous security vulnerabilities in our computing networks. Securing all of these devices is a daunting task. In this paper, we argue that IoT device communications should be default-off and desired network communications must be explicitly enabled. Unlike traditional networked applications or devices like a web browser or PC, IoT applications and devices serve narrowly defined purposes and do not require access to all services in the network. Our proposal, Bark, a policy language and runtime for specifying and enforcing minimal access permissions in IoT networks, exploits this fact. Bark phrases access control policies in terms of natural questions (who, what, where, when, and how) and transforms them into transparently enforceable rules for IoT application protocols. Bark can express detailed rules such as "Let the lights see the luminosity of the bedroom sensor at any time" and "Let a device at my front door, if I approve it, unlock my smart lock for 30 seconds" in a way that is presentable and explainable to users. We implement Bark for Wi-Fi/IP and Bluetooth Low Energy (BLE) networks and evaluate its efficacy on several example applications and attacks.

2019-08-05
Samaniego, M., Deters, R..  2018.  Zero-Trust Hierarchical Management in IoT. 2018 IEEE International Congress on Internet of Things (ICIOT). :88-95.

Internet of Things (IoT) is experiencing exponential scalability. This scalability introduces new challenges regarding management of IoT networks. The question that emerges is how we can trust the constrained infrastructure that shortly is expected to be formed by millions of 'things.' The answer is not to trust. This research introduces Amatista, a blockchain-based middleware for management in IoT. Amatista presents a novel zero-trust hierarchical mining process that allows validating the infrastructure and transactions at different levels of trust. This research evaluates Amatista on Edison Arduino Boards.

2019-01-21
Samanta, P., Kelly, E., Bashir, A., Debroy, S..  2018.  Collaborative Adversarial Modeling for Spectrum Aware IoT Communications. 2018 International Conference on Computing, Networking and Communications (ICNC). :447–451.
In order to cater the growing spectrum demands of large scale future 5G Internet of Things (IoT) applications, Dynamic Spectrum Access (DSA) based networks are being proposed as a high-throughput and cost-effective solution. However the lack of understanding of DSA paradigm's inherent security vulnerabilities on IoT networks might become a roadblock towards realizing such spectrum aware 5G vision. In this paper, we make an attempt to understand how such inherent DSA vulnerabilities in particular Spectrum Sensing Data Falsification (SSDF) attacks can be exploited by collaborative group of selfish adversaries and how that can impact the performance of spectrum aware IoT applications. We design a utility based selfish adversarial model mimicking collaborative SSDF attack in a cooperative spectrum sensing scenario where IoT networks use dedicated environmental sensing capability (ESC) for spectrum availability estimation. We model the interactions between the IoT system and collaborative selfish adversaries using a leader-follower game and investigate the existence of equilibrium. Using simulation results, we show the nature of adversarial and system utility components against system variables. We also explore Pareto-optimal adversarial strategy design that maximizes the attacker utility for varied system strategy spaces.
2019-01-16
Sahay, R., Geethakumari, G., Modugu, K..  2018.  Attack graph — Based vulnerability assessment of rank property in RPL-6LOWPAN in IoT. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :308–313.

A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.

2018-12-10
Farooq, M. J., Zhu, Q..  2018.  On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Transactions on Wireless Communications. 17:2618–2632.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.

2018-03-19
Massonet, P., Deru, L., Achour, A., Dupont, S., Levin, A., Villari, M..  2017.  End-To-End Security Architecture for Federated Cloud and IoT Networks. 2017 IEEE International Conference on Smart Computing (SMARTCOMP). :1–6.

Smart Internet of Things (IoT) applications will rely on advanced IoT platforms that not only provide access to IoT sensors and actuators, but also provide access to cloud services and data analytics. Future IoT platforms should thus provide connectivity and intelligence. One approach to connecting IoT devices, IoT networks to cloud networks and services is to use network federation mechanisms over the internet to create network slices across heterogeneous platforms. Network slices also need to be protected from potential external and internal threats. In this paper we describe an approach for enforcing global security policies in the federated cloud and IoT networks. Our approach allows a global security to be defined in the form of a single service manifest and enforced across all federation network segments. It relies on network function virtualisation (NFV) and service function chaining (SFC) to enforce the security policy. The approach is illustrated with two case studies: one for a user that wishes to securely access IoT devices and another in which an IoT infrastructure administrator wishes to securely access some remote cloud and data analytics services.

2015-05-04
Pawlowski, M.P., Jara, A.J., Ogorzalek, M.J..  2014.  Extending Extensible Authentication Protocol over IEEE 802.15.4 Networks. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2014 Eighth International Conference on. :340-345.

Internet into our physical world and making it present everywhere. This evolution is also raising challenges in issues such as privacy, and security. For that reason, this work is focused on the integration and lightweight adaptation of existing authentication protocols, which are able also to offer authorization and access control functionalities. In particular, this work is focused on the Extensible Authentication Protocol (EAP). EAP is widely used protocol for access control in local area networks such Wireless (802.11) and wired (802.3). This work presents an integration of the EAP frame into IEEE 802.15.4 frames, demonstrating that EAP protocol and some of its mechanisms are feasible to be applied in constrained devices, such as the devices that are populating the IoT networks.