Visible to the public Biblio

Filters: Keyword is Intelligent Data and Security  [Clear All Filters]
2020-11-23
Jolfaei, A., Kant, K., Shafei, H..  2019.  Secure Data Streaming to Untrusted Road Side Units in Intelligent Transportation System. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :793–798.
The paper considers data security issues in vehicle-to-infrastructure communications, where vehicles stream data to a road side unit. We assume aggregated data in road side units can be stored or used for data analytics. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicle layer, where a group leader is assigned to communicate with group devices and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality of sensory data.
Zhu, L., Dong, H., Shen, M., Gai, K..  2019.  An Incentive Mechanism Using Shapley Value for Blockchain-Based Medical Data Sharing. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :113–118.
With the development of big data and machine learning techniques, medical data sharing for the use of disease diagnosis has received considerable attention. Blockchain, as an emerging technology, has been widely used to resolve the efficiency and security issues in medical data sharing. However, the existing studies on blockchain-based medical data sharing have rarely concerned about the reasonable incentive mechanism. In this paper, we propose a cooperation model where medical data is shared via blockchain. We derive the topological relationships among the participants consisting of data owners, miners and third parties, and gradually develop the computational process of Shapley value revenue distribution. Specifically, we explore the revenue distribution under different consensuses of blockchain. Finally, we demonstrate the incentive effect and rationality of the proposed solution by analyzing the revenue distribution.
Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., Joshi, K..  2019.  Anomaly Detection Models for Smart Home Security. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :19–24.
Recent years have seen significant growth in the adoption of smart homes devices. These devices provide convenience, security, and energy efficiency to users. For example, smart security cameras can detect unauthorized movements, and smoke sensors can detect potential fire accidents. However, many recent examples have shown that they open up a new cyber threat surface. There have been several recent examples of smart devices being hacked for privacy violations and also misused so as to perform DDoS attacks. In this paper, we explore the application of big data and machine learning to identify anomalous activities that can occur in a smart home environment. A Hidden Markov Model (HMM) is trained on network level sensor data, created from a test bed with multiple sensors and smart devices. The generated HMM model is shown to achieve an accuracy of 97% in identifying potential anomalies that indicate attacks. We present our approach to build this model and compare with other techniques available in the literature.
Awaysheh, F., Cabaleiro, J. C., Pena, T. F., Alazab, M..  2019.  Big Data Security Frameworks Meet the Intelligent Transportation Systems Trust Challenges. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :807–813.
Many technological cases exploiting data science have been realized in recent years; machine learning, Internet of Things, and stream data processing are examples of this trend. Other advanced applications have focused on capturing the value from streaming data of different objects of transport and traffic management in an Intelligent Transportation System (ITS). In this context, security control and trust level play a decisive role in the sustainable adoption of this trend. However, conceptual work integrating the security approaches of different disciplines into one coherent reference architecture is limited. The contribution of this paper is a reference architecture for ITS security (called SITS). In addition, a classification of Big Data technologies, products, and services to address the ITS trust challenges is presented. We also proposed a novel multi-tier ITS security framework for validating the usability of SITS with business intelligence development in the enterprise domain.
Guo, H., Shen, X., Goh, W. L., Zhou, L..  2018.  Data Analysis for Anomaly Detection to Secure Rail Network. 2018 International Conference on Intelligent Rail Transportation (ICIRT). :1–5.
The security, safety and reliability of rail systems are of the utmost importance. In order to better detect and prevent anomalies, it is necessary to accurately study and analyze the network traffic and abnormal behaviors, as well as to detect and alert any anomalies if happened. This paper focuses on data analysis for anomaly detection with Wireshark and packet analysis system. An alert function is also developed to provide an alert when abnormality happens. Rail network traffic data have been captured and analyzed so that their network features are obtained and used to detect the abnormality. To improve efficiency, a packet analysis system is introduced to receive the network flow and analyze data automatically. The provision of two detection methods, i.e., the Wireshark detection and the packet analysis system together with the alert function will facilitate the timely detection of abnormality and triggering of alert in the rail network.
Kumari, K. A., Sadasivam, G. S., Gowri, S. S., Akash, S. A., Radhika, E. G..  2018.  An Approach for End-to-End (E2E) Security of 5G Applications. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :133–138.
As 5G transitions from an industrial vision to a tangible, next-generation mobile technology, security remains key business driver. Heterogeneous environment, new networking paradigms and novel use cases makes 5G vulnerable to new security threats. This in turn necessitates a flexible and dependable security mechanism. End-to-End (E2E) data protection provides better security, avoids repeated security operations like encryption/decryption and provides differentiated security based on the services. E2E security deals with authentication, integrity, key management and confidentiality. The attack surface of a 5G system is larger as 5G aims for a heterogeneous networked society. Hence attack resistance needs to be a design consideration when defining new 5G protocols. This framework has been designed for accessing the manifold applications with high security and trust by offering E2E security for various services. The proposed framework is evaluated based on computation complexity, communication complexity, attack resistance rate and security defensive rate. The protocol is also evaluated for correctness, and resistance against passive, active and dictionary attacks using random oracle model and Automated Validation of Internet Security Protocols and Applications (AVISPA) tool.
Dong, C., Liu, Y., Zhang, Y., Shi, P., Shao, X., Ma, C..  2018.  Abnormal Bus Data Detection of Intelligent and Connected Vehicle Based on Neural Network. 2018 IEEE International Conference on Computational Science and Engineering (CSE). :171–176.
In the paper, our research of abnormal bus data analysis of intelligent and connected vehicle aims to detect the abnormal data rapidly and accurately generated by the hackers who send malicious commands to attack vehicles through three patterns, including remote non-contact, short-range non-contact and contact. The research routine is as follows: Take the bus data of 10 different brands of intelligent and connected vehicles through the real vehicle experiments as the research foundation, set up the optimized neural network, collect 1000 sets of the normal bus data of 15 kinds of driving scenarios and the other 300 groups covering the abnormal bus data generated by attacking the three systems which are most common in the intelligent and connected vehicles as the training set. In the end after repeated amendments, with 0.5 seconds per detection, the intrusion detection system has been attained in which for the controlling system the abnormal bus data is detected at the accuracy rate of 96% and the normal data is detected at the accuracy rate of 90%, for the body system the abnormal one is 87% and the normal one is 80%, for the entertainment system the abnormal one is 80% and the normal one is 65%.
Wu, K., Gao, X., Liu, Y..  2018.  Web server security evaluation method based on multi-source data. 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB). :1–6.
Traditional web security assessments are evaluated using a single data source, and the results of the calculations from different data sources are different. Based on multi-source data, this paper uses Analytic Hierarchy Process to construct an evaluation model, calculates the weight of each level of indicators in the web security evaluation model, analyzes and processes the data, calculates the host security threat assessment values at various levels, and visualizes the evaluation results through ECharts+WebGL technology.
Mohammadian, M..  2018.  Network Security Risk Assessment Using Intelligent Agents. 2018 International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR). :1–6.
Network security is an important issue in today's world with existence of network systems that communicate data and information about all aspects of our life, work and business. Network security is an important issue with connected networks and data communication between organisations of that specialized in different areas. Network security engineers spend a considerable amount of time to investigate network for security breaches and to enhance the security of their networks and data communications on their networks. They use Attack Graphs (AGs) which are graphical representation of networks to assist them in analysing large networks. With increase size of networks and their complexity, the use of attack graphs alone does not provide the necessary risk analysis and assessment facilities. There is a need for automated intelligent systems such as multiagent systems to assist in analysing, assessing and testing networks. Network systems changes with the increase in the size of organisation and connectivity of network of organisations based on the business needs or organisational or governmental rules and regulations. In this paper a multi-agent system is developed assist in analysing interconnected network to identify security risks. The multi-agent system is capable of security network analysis to identify paths using an attack graph of the network under consideration to protect network systems, as the networks grow and change, against possible attacks. The multiagent system uses a model developed by Mohammadian [3] for converting AGs to Fuzzy Cognitive Maps (FCMs) to identify attack paths from attack graphs and perform security risk analysis. In this paper a novel decision-making approach using FCMs is employed.
Wang, X., Li, J..  2018.  Design of Intelligent Home Security Monitoring System Based on Android. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :2621–2624.
In view of the problem that the health status and safety monitoring of the traditional intelligent home are mainly dependent on the manual inspection, this paper introduces the intelligent home-based remote monitoring system by introducing the Internet-based Internet of Things technology into the intelligent home condition monitoring and safety assessment. The system's Android remote operation based on the MVP model to develop applications, the use of neural networks to deal with users daily use of operational data to establish the network data model, combined with S3C2440A microcontrollers in the gateway to the embedded Linux to facilitate different intelligent home drivers development. Finally, the power line communication network is used to connect the intelligent electrical appliances to the gateway. By calculating the success rate of the routing nodes, the success rate of the network nodes of 15 intelligent devices is 98.33%. The system can intelligent home many electrical appliances at the same time monitoring, to solve the system data and network congestion caused by the problem can not he security monitoring.
Singh, M., Kim, S..  2018.  Crypto trust point (cTp) for secure data sharing among intelligent vehicles. 2018 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Tremendous amount of research is going on in the field of Intelligent vehicles (IVs)in industries and academics. Although, IV supports a better convenience for the society, but it also suffers from some concerns. Security is the major concern in Intelligent vehicle technology, due to its high exposure to data and information communication. The environment of the IV communication has many security vulnerabilities, which cannot be solved by Traditional Security approaches due to their fixed capabilities. Among security, trust, data accuracy and reliability of communication data in the communication channel are the other issues in IV communication. Blockchain is a peer-to-peer, distributed and decentralized technology which is used by the digital currency Bit-coin, to build trust and reliability and it has capability and is feasible to use Blockchain in IV Communication. In this paper, we propose, Blockchain based crypto Trust point (cTp) mechanism for IV communication. Using cTp in the IVs communication environment can provide IV data security and reliability. cTp mechanism accounts for the legitimate and illegitimate vehicles behavior, and rewarding thereby building trust among the vehicles. We also propose a reward based system using cTp (exchange of some cTp among IVs, during successful communication). We use blockchain technology in the Intelligent Transportation System (ITS) for the data management of the cTp. Using ITS, cTp details of every vehicle can be accessed ubiquitously by IVs. We evaluation, our proposal using the intersection use case scenario for intelligent vehicles communication.
Karavaev, I. S., Selivantsev, V. I., Shtern, Y. I., Shtern, M. Y..  2018.  The development of the data transfer protocol in the intelligent control systems of the energy carrier parameters. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1305–1308.
For the control of the parameters and for the accounting of the energy consumption in buildings and structures the intelligent control system has been developed that provides: the continuous monitoring of the thermodynamic parameters of the energy carriers measured by wireless smart sensors; the calculation and transmission of the measured parameters via the radio channel to the database for their accumulation and storage; control signals delivery for the control devices of the energy consumption and for the security devices; the maintaining of a database of the energy consumption accounting. For the interaction of the hardware and software in the control system, the SimpliciTI-based protocol and algorithms for the reliable data transmission over the radio channel in a dense urban environment have been developed.
Sreekumari, P..  2018.  Privacy-Preserving Keyword Search Schemes over Encrypted Cloud Data: An Extensive Analysis. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :114–120.
Big Data has rapidly developed into a hot research topic in many areas that attracts attention from academia and industry around the world. Many organization demands efficient solution to store, process, analyze and search huge amount of information. With the rapid development of cloud computing, organization prefers cloud storage services to reduce the overhead of storing data locally. However, the security and privacy of big data in cloud computing is a major source of concern. One of the positive ways of protecting data is encrypting it before outsourcing to remote servers, but the encrypted significant amounts of cloud data brings difficulties for the remote servers to perform any keyword search functions without leaking information. Various privacy-preserving keyword search (PPKS) schemes have been proposed to mitigate the privacy issue of big data encrypted on cloud storage. This paper presents an extensive analysis of the existing PPKS techniques in terms of verifiability, efficiency and data privacy. Through this analysis, we present some valuable directions for future work.
2020-06-26
Jaiswal, Prajwal Kumar, Das, Sayari, Panigrahi, Bijaya Ketan.  2019.  PMU Based Data Driven Approach For Online Dynamic Security Assessment in Power Systems. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1—7.

This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.

2020-05-08
Ming, Liang, Zhao, Gang, Huang, Minhuan, Kuang, Xiaohui, Li, Hu, Zhang, Ming.  2018.  Security Analysis of Intelligent Transportation Systems Based on Simulation Data. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :184—187.

Modern vehicles in Intelligent Transportation Systems (ITS) can communicate with each other as well as roadside infrastructure units (RSUs) in order to increase transportation efficiency and road safety. For example, there are techniques to alert drivers in advance about traffic incidents and to help them avoid congestion. Threats to these systems, on the other hand, can limit the benefits of these technologies. Securing ITS itself is an important concern in ITS design and implementation. In this paper, we provide a security model of ITS which extends the classic layered network security model with transportation security and information security, and gives a reference for designing ITS architectures. Based on this security model, we also present a classification of ITS threats for defense. Finally a proof-of-concept example with malicious nodes in an ITS system is also given to demonstrate the impact of attacks. We analyzed the threat of malicious nodes and their effects to commuters, like increasing toll fees, travel distances, and travel times etc. Experimental results from simulations based on Veins shows the threats will bring about 43.40% more total toll fees, 39.45% longer travel distances, and 63.10% more travel times.

2020-05-04
Chen, Hanlin, Hu, Ming, Yan, Hui, Yu, Ping.  2019.  Research on Industrial Internet of Things Security Architecture and Protection Strategy. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :365–368.

Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.

2020-04-03
Kantarcioglu, Murat, Shaon, Fahad.  2019.  Securing Big Data in the Age of AI. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—220.

Increasingly organizations are collecting ever larger amounts of data to build complex data analytics, machine learning and AI models. Furthermore, the data needed for building such models may be unstructured (e.g., text, image, and video). Hence such data may be stored in different data management systems ranging from relational databases to newer NoSQL databases tailored for storing unstructured data. Furthermore, data scientists are increasingly using programming languages such as Python, R etc. to process data using many existing libraries. In some cases, the developed code will be automatically executed by the NoSQL system on the stored data. These developments indicate the need for a data security and privacy solution that can uniformly protect data stored in many different data management systems and enforce security policies even if sensitive data is processed using a data scientist submitted complex program. In this paper, we introduce our vision for building such a solution for protecting big data. Specifically, our proposed system system allows organizations to 1) enforce policies that control access to sensitive data, 2) keep necessary audit logs automatically for data governance and regulatory compliance, 3) sanitize and redact sensitive data on-the-fly based on the data sensitivity and AI model needs, 4) detect potentially unauthorized or anomalous access to sensitive data, 5) automatically create attribute-based access control policies based on data sensitivity and data type.

2020-03-23
Tu, Qingqing, Jing, Yulin, Zhu, Weiwei.  2019.  Research on Privacy Security Risk Evaluation of Intelligent Recommendation Mobile Applications Based on a Hierarchical Risk Factor Set. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :638–6384.

Intelligent recommendation applications based on data mining have appeared as prospective solution for consumer's demand recognition in large-scale data, and it has contained a great deal of consumer data, which become the most valuable wealth of application providers. However, the increasing threat to consumer privacy security in intelligent recommendation mobile application (IR App) makes it necessary to have a risk evaluation to narrow the gap between consumers' need for convenience with efficiency and need for privacy security. For the previous risk evaluation researches mainly focus on the network security or information security for a single work, few of which consider the whole data lifecycle oriented privacy security risk evaluation, especially for IR App. In this paper, we analyze the IR App's features based on the survey on both algorithm research and market prospect, then provide a hierarchical factor set based privacy security risk evaluation method, which includes whole data lifecycle factors in different layers.

2020-02-17
Zou, Zhenwan, Hou, Yingsa, Yang, Huiting, Li, Mingxuan, Wang, Bin, Guo, Qingrui.  2019.  Research and Implementation of Intelligent Substation Information Security Risk Assessment Tool. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1306–1310.

In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.

2020-01-20
Zhu, Yan, Zhang, Yi, Wang, Jing, Song, Weijing, Chu, Cheng-Chung, Liu, Guowei.  2019.  From Data-Driven to Intelligent-Driven: Technology Evolution of Network Security in Big Data Era. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:103–109.

With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.

2019-03-06
Suwansrikham, P., She, K..  2018.  Asymmetric Secure Storage Scheme for Big Data on Multiple Cloud Providers. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :121-125.

Recently, cloud computing is an emerging technology along with big data. Both technologies come together. Due to the enormous size of data in big data, it is impossible to store them in local storage. Alternatively, even we want to store them locally, we have to spend much money to create bit data center. One way to save money is store big data in cloud storage service. Cloud storage service provides users space and security to store the file. However, relying on single cloud storage may cause trouble for the customer. CSP may stop its service anytime. It is too risky if data owner hosts his file only single CSP. Also, the CSP is the third party that user have to trust without verification. After deploying his file to CSP, the user does not know who access his file. Even CSP provides a security mechanism to prevent outsider attack. However, how user ensure that there is no insider attack to steal or corrupt the file. This research proposes the way to minimize the risk, ensure data privacy, also accessing control. The big data file is split into chunks and distributed to multiple cloud storage provider. Even there is insider attack; the attacker gets only part of the file. He cannot reconstruct the whole file. After splitting the file, metadata is generated. Metadata is a place to keep chunk information, includes, chunk locations, access path, username and password of data owner to connect each CSP. Asymmetric security concept is applied to this research. The metadata will be encrypted and transfer to the user who requests to access the file. The file accessing, monitoring, metadata transferring is functions of dew computing which is an intermediate server between the users and cloud service.