Biblio
This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.
Modern vehicles in Intelligent Transportation Systems (ITS) can communicate with each other as well as roadside infrastructure units (RSUs) in order to increase transportation efficiency and road safety. For example, there are techniques to alert drivers in advance about traffic incidents and to help them avoid congestion. Threats to these systems, on the other hand, can limit the benefits of these technologies. Securing ITS itself is an important concern in ITS design and implementation. In this paper, we provide a security model of ITS which extends the classic layered network security model with transportation security and information security, and gives a reference for designing ITS architectures. Based on this security model, we also present a classification of ITS threats for defense. Finally a proof-of-concept example with malicious nodes in an ITS system is also given to demonstrate the impact of attacks. We analyzed the threat of malicious nodes and their effects to commuters, like increasing toll fees, travel distances, and travel times etc. Experimental results from simulations based on Veins shows the threats will bring about 43.40% more total toll fees, 39.45% longer travel distances, and 63.10% more travel times.
Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.
Increasingly organizations are collecting ever larger amounts of data to build complex data analytics, machine learning and AI models. Furthermore, the data needed for building such models may be unstructured (e.g., text, image, and video). Hence such data may be stored in different data management systems ranging from relational databases to newer NoSQL databases tailored for storing unstructured data. Furthermore, data scientists are increasingly using programming languages such as Python, R etc. to process data using many existing libraries. In some cases, the developed code will be automatically executed by the NoSQL system on the stored data. These developments indicate the need for a data security and privacy solution that can uniformly protect data stored in many different data management systems and enforce security policies even if sensitive data is processed using a data scientist submitted complex program. In this paper, we introduce our vision for building such a solution for protecting big data. Specifically, our proposed system system allows organizations to 1) enforce policies that control access to sensitive data, 2) keep necessary audit logs automatically for data governance and regulatory compliance, 3) sanitize and redact sensitive data on-the-fly based on the data sensitivity and AI model needs, 4) detect potentially unauthorized or anomalous access to sensitive data, 5) automatically create attribute-based access control policies based on data sensitivity and data type.
Intelligent recommendation applications based on data mining have appeared as prospective solution for consumer's demand recognition in large-scale data, and it has contained a great deal of consumer data, which become the most valuable wealth of application providers. However, the increasing threat to consumer privacy security in intelligent recommendation mobile application (IR App) makes it necessary to have a risk evaluation to narrow the gap between consumers' need for convenience with efficiency and need for privacy security. For the previous risk evaluation researches mainly focus on the network security or information security for a single work, few of which consider the whole data lifecycle oriented privacy security risk evaluation, especially for IR App. In this paper, we analyze the IR App's features based on the survey on both algorithm research and market prospect, then provide a hierarchical factor set based privacy security risk evaluation method, which includes whole data lifecycle factors in different layers.
In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.
With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.
Recently, cloud computing is an emerging technology along with big data. Both technologies come together. Due to the enormous size of data in big data, it is impossible to store them in local storage. Alternatively, even we want to store them locally, we have to spend much money to create bit data center. One way to save money is store big data in cloud storage service. Cloud storage service provides users space and security to store the file. However, relying on single cloud storage may cause trouble for the customer. CSP may stop its service anytime. It is too risky if data owner hosts his file only single CSP. Also, the CSP is the third party that user have to trust without verification. After deploying his file to CSP, the user does not know who access his file. Even CSP provides a security mechanism to prevent outsider attack. However, how user ensure that there is no insider attack to steal or corrupt the file. This research proposes the way to minimize the risk, ensure data privacy, also accessing control. The big data file is split into chunks and distributed to multiple cloud storage provider. Even there is insider attack; the attacker gets only part of the file. He cannot reconstruct the whole file. After splitting the file, metadata is generated. Metadata is a place to keep chunk information, includes, chunk locations, access path, username and password of data owner to connect each CSP. Asymmetric security concept is applied to this research. The metadata will be encrypted and transfer to the user who requests to access the file. The file accessing, monitoring, metadata transferring is functions of dew computing which is an intermediate server between the users and cloud service.