Biblio
Cloud, Software-Defined Networking (SDN), and Network Function Virtualization (NFV) technologies have introduced a new era of cybersecurity threats and challenges. To protect cloud infrastructure, in our earlier work, we proposed Software Defined Security Service (SDS2) to tackle security challenges centered around a new policy-based interaction model. The security architecture consists of three main components: a Security Controller, Virtual Security Functions (VSF), and a Sec-Manage Protocol. However, the security architecture requires an agile and specific protocol to transfer interaction parameters and security messages between its components where OpenFlow considers mainly as network routing protocol. So, The Sec-Manage protocol has been designed specifically for obtaining policy-based interaction parameters among cloud entities between the security controller and its VSFs. This paper focuses on the design and the implementation of the Sec-Manage protocol and demonstrates its use in setting, monitoring, and conveying relevant policy-based interaction security parameters.
The legacy security defense mechanisms cannot resist where emerging sophisticated threats such as zero-day and malware campaigns have profoundly changed the dimensions of cyber-attacks. Recent studies indicate that cyber threat intelligence plays a crucial role in implementing proactive defense operations. It provides a knowledge-sharing platform that not only increases security awareness and readiness but also enables the collaborative defense to diminish the effectiveness of potential attacks. In this paper, we propose a secure distributed model to facilitate cyber threat intelligence sharing among diverse participants. The proposed model uses blockchain technology to assure tamper-proof record-keeping and smart contracts to guarantee immutable logic. We use an open-source permissioned blockchain platform, Hyperledger Fabric, to implement the blockchain application. We also utilize the flexibility and management capabilities of Software-Defined Networking to be integrated with the proposed sharing platform to enhance defense perspectives against threats in the system. In the end, collaborative DDoS attack mitigation is taken as a case study to demonstrate our approach.
Fully securing networks from remote attacks is recognized by the IT industry as a critical and imposing challenge. Even highly secure systems remain vulnerable to attacks and advanced persistent threats. Air-gapped networks may be secure from remote attack. One-way flows are a novel approach to improving the security of telemetry for critical infrastructure, retaining some of the benefits of interconnectivity whilst maintaining a level of network security analogous to that of unconnected devices. Simple and inexpensive techniques can be used to provide this unidirectional security, removing the risk of remote attack from a range of potential targets and subnets. The application of one-way networks is demonstrated using IEEE compliant PMU data streams as a case study. Scalability is demonstrated using SDN techniques. Finally, these techniques are combined, demonstrating a node which can be secured from remote attack, within defined limitations.