Biblio
The concept of Virtualized Network Functions (VNFs) aims to move Network Functions (NFs) out of dedicated hardware devices into software that runs on commodity hardware. A single NF consists of multiple VNF instances, usually running on virtual machines in a cloud infrastructure. The elastic management of an NF refers to load management across the VNF instances and the autonomic scaling of the number of VNF instances as the load on the NF changes. In this paper, we present EL-SEC, an autonomic framework to elastically manage security NFs on a virtualized infrastructure. As a use case, we deploy the Snort Intrusion Detection System as the NF on the GENI testbed. Concepts from control theory are used to create an Elastic Manager, which implements various controllers - in this paper, Proportional Integral (PI) and Proportional Integral Derivative (PID) - to direct traffic across the VNF Snort instances by monitoring the current load. RINA (a clean-slate Recursive InterNetwork Architecture) is used to build a distributed application that monitors load and collects Snort alerts, which are processed by the Elastic Manager and an Attack Analyzer, respectively. Software Defined Networking (SDN) is used to steer traffic through the VNF instances, and to block attack traffic. Our results show that virtualized security NFs can be easily deployed using our EL-SEC framework. With the help of real-time graphs, we show that PI and PID controllers can be used to easily scale the system, which leads to quicker detection of attacks.
SDN (Software Defined Network) with multiple controllers draws more attention for the increasing scale of the network. The architecture can handle what SDN with single controller is not able to address. In order to understand what this architecture can accomplish and face precisely, we analyze it with formal methods. In this paper, we apply CSP (Communicating Sequential Processes) to model the routing service of SDN under HyperFlow architecture based on OpenFlow protocol. By using model checker PAT (Process Analysis Toolkit), we verify that the models satisfy three properties, covering deadlock freeness, consistency and fault tolerance.
Being able to describe a specific network as consistent is a large step towards resiliency. Next to the importance of security lies the necessity of consistency verification. Attackers are currently focusing on targeting small and crutial goals such as network configurations or flow tables. These types of attacks would defy the whole purpose of a security system when built on top of an inconsistent network. Advances in Artificial Intelligence (AI) are playing a key role in ensuring a fast responce to the large number of evolving threats. Software Defined Networking (SDN), being centralized by design, offers a global overview of the network. Robustness and adaptability are part of a package offered by programmable networking, which drove us to consider the integration between both AI and SDN. The general goal of our series is to achieve an Artificial Intelligence Resiliency System (ARS). The aim of this paper is to propose a new AI-based consistency verification system, which will be part of ARS in our future work. The comparison of different deep learning architectures shows that Convolutional Neural Networks (CNN) give the best results with an accuracy of 99.39% on our dataset and 96% on our consistency test scenario.
A framework of Software-Defined Networking (SDN) provides a centralized and integrated method to manage and control modern optical networks. Unfortunately, the centralized and programmable structure of SDN introduces several new security threats, which may allow an adversary to take over the entire operation of the network. In this paper, we investigate the potential security threats of SDN over optical networks and propose a mutual authentication and a fine-grained access control mechanism, which are essential to avoid an unauthorized access to the network. The proposed schemes are based only on cryptographic hash functions and do not require an installation of the complicated cryptographic library such as SSL. Unlike conventional authentication and access control schemes, the proposed schemes are flexible, compact and, in addition, are resistant to quantum computer attacks, which may become critical in the near future.
SDN with centralized control is more vulnerable to suffer from APT than traditional network. To accurately detect the APT that the SDN may suffer from, this paper proposes the APT detection method based on attack tree for SDN. Firstly, after deeply analyzing the process of APT in SDN, we establish APT attack model based on attack tree. Then, correlation analysis of attack behavior that detected by multiple detection methods to get attack path. Finally, the attack path match the APT attack model to judge whether there is an APT in SDN. Experiment shows that the method is more accurate to detect APT in SDN, and less overhead.
The primary innovations behind Software Defined Networks (SDN)are the decoupling of the control plane from the data plane and centralizing the network management through a specialized application running on the controller. Despite all its capabilities, the introduction of various architectural entities of SDN poses many security threats and potential target. Especially, Distributed Denial of Services (DDoS) is a rapidly growing attack that poses a tremendous threat to both control plane and forwarding plane of SDN. Asthe control layer is vulnerable to DDoS attack, the goal of this paper is to provide a defense system which is based on Learning Automata (LA) concepts. It is a self-operating mechanism that responds to a sequence of actions in a certain way to achieve a specific goal. The simulation results show that this scheme effectively reduces the TCP connection setup delay due to DDoS attack.
Cloud computing is being deployed more and more widely. However, the difficulty of monitoring the huge east-west traffic is a great security concern. In this paper, we proposed FBSample, a sampling method which employs the central control feature of SDN and feedback information of IDS. Evaluation results show FBSample can largely reduce the amount of packets to be transferred while maintaining a relatively high detection precision.
The IETF's push towards standardizing the Manufacturer Usage Description (MUD) grammar and mechanism for specifying IoT device behavior is gaining increasing interest from industry. The ability to control inappropriate communication between devices in the form of access control lists (ACLs) is expected to limit the attack surface on IoT devices; however, little is known about how MUD policies will get enforced in operational networks, and how they will interact with current and future intrusion detection systems (IDS). We believe this paper is the first attempt to translate MUD policies into flow rules that can be enforced using SDN, and in relating exception behavior to attacks that can be detected via off-the-shelf IDS. Our first contribution develops and implements a system that translates MUD policies to flow rules that are proactively configured into network switches, as well as reactively inserted based on run-time bindings of DNS. We use traces of 28 consumer IoT devices taken over several months to evaluate the performance of our system in terms of switch flow-table size and fraction of exception traffic that needs software inspection. Our second contribution identifies the limitations of flow-rules derived from MUD in protecting IoT devices from internal and external network attacks, and we show how our system is able to detect such volumetric attacks (including port scanning, TCP/UDP/ICMP flooding, ARP spoofing, and TCP/SSDP/SNMP reflection) by sending only a very small fraction of exception packets to off-the-shelf IDS.
Using Software-defined Networks in wide area (SDN-WAN) has been strongly emerging in the past years. Due to scalability and economical reasons, SDN-WAN mostly uses an in-band control mechanism, which implies that control and data sharing the same critical physical links. However, the in-band control and centralized control architecture can be exploited by attackers to launch distributed denial of service (DDoS) on SDN control plane by flooding the shared links and/or the Open flow agents. Therefore, constructing a resilient software designed network requires dynamic isolation and distribution of the control flow to minimize damage and significantly increase attack cost. Existing solutions fall short to address this challenge because they require expensive extra dedicated resources or changes in OpenFlow protocol. In this paper, we propose a moving target technique called REsilient COntrol Network architecture (ReCON) that uses the same SDN network resources to defend SDN control plane dynamically against the DDoS attacks. ReCON essentially, (1) minimizes the sharing of critical resources among data and control traffic, and (2) elastically increases the limited capacity of the software control agents on-demand by dynamically using the under-utilized resources from within the same SDN network. To implement a practical solution, we formalize ReCON as a constraints satisfaction problem using Satisfiability Modulo Theory (SMT) to guarantee a correct-by-construction control plan placement that can handle dynamic network conditions.
Network Management is a critical process for an enterprise to configure and monitor the network devices using cost effective methods. It is imperative for it to be robust and free from adversarial or accidental security flaws. With the advent of cloud computing and increasing demands for centralized network control, conventional management protocols like SNMP appear inadequate and newer techniques like NMDA and NETCONF have been invented. However, unlike SNMP which underwent improvements concentrating on security, the new data management and storage techniques have not been scrutinized for the inherent security flaws. In this paper, we identify several vulnerabilities in the widely used critical infrastructures which leverage the Network Management Datastore Architecture design (NMDA). Software Defined Networking (SDN), a proponent of NMDA, heavily relies on its datastores to program and manage the network. We base our research on the security challenges put forth by the existing datastore's design as implemented by the SDN controllers. The vulnerabilities identified in this work have a direct impact on the controllers like OpenDayLight, Open Network Operating System and their proprietary implementations (by CISCO, Ericsson, RedHat, Brocade, Juniper, etc). Using our threat detection methodology, we demonstrate how the NMDA-based implementations are vulnerable to attacks which compromise availability, integrity, and confidentiality of the network. We finally propose defense measures to address the security threats in the existing design and discuss the challenges faced while employing these countermeasures.
Software-defined networking (SDN) and Network Function Virtualization (NFV) have inspired security researchers to devise new security applications for these new network technology. However, since SDN and NFV are basically faithful to operating a network, they only focus on providing features related to network control. Therefore, it is challenging to implement complex security functions such as packet payload inspection. Several studies have addressed this challenge through an SDN data plane extension, but there were problems with performance and control interfaces. In this paper, we introduce a new data plane architecture, HEX which leverages existing data plane architectures for SDN to enable network security applications in an SDN environment efficiently and effectively. HEX provides security services as a set of OpenFlow actions ensuring high performance and a function of handling multiple SDN actions with a simple control command. We implemented a DoS detector and Deep Packet Inspection (DPI) as the prototype features of HEX using the NetFPGA-1G-CML, and our evaluation results demonstrate that HEX can provide security services as a line-rate performance.
The growing interest in the smart device/home/city has resulted in increasing popularity of Internet of Things (IoT) deployment. However, due to the open and heterogeneous nature of IoT networks, there are various challenges to deploy an IoT network, among which security and scalability are the top two to be addressed. To improve the security and scalability for IoT networks, we propose a Software-Defined Virtual Private Network (SD-VPN) solution, in which each IoT application is allocated with its own overlay VPN. The VPN tunnels used in this paper are VxLAN based tunnels and we propose to use the SDN controller to push the flow table of each VPN to the related OpenvSwitch via the OpenFlow protocol. The SD-VPN solution can improve the security of an IoT network by separating the VPN traffic and utilizing service chaining. Meanwhile, it also improves the scalability by its overlay VPN nature and the VxLAN technology.
Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.
This paper presents a review on how to benefit from software-defined networking (SDN) to enhance smart grid security. For this purpose, the attacks threatening traditional smart grid systems are classified according to availability, integrity, and confidentiality, which are the main cyber-security objectives. The traditional smart grid architecture is redefined with SDN and a conceptual model for SDN-based smart grid systems is proposed. SDN based solutions to the mentioned security threats are also classified and evaluated. Our conclusions suggest that SDN helps to improve smart grid security by providing real-time monitoring, programmability, wide-area security management, fast recovery from failures, distributed security and smart decision making based on big data analytics.
Virtual switches are a crucial component of SDN-based cloud systems, enabling the interconnection of virtual machines in a flexible and "software-defined" manner. This paper raises the alarm on the security implications of virtual switches. In particular, we show that virtual switches not only increase the attack surface of the cloud, but virtual switch vulnerabilities can also lead to attacks of much higher impact compared to traditional switches. We present a systematic security analysis and identify four design decisions which introduce vulnerabilities. Our findings motivate us to revisit existing threat models for SDN-based cloud setups, and introduce a new attacker model for SDN-based cloud systems using virtual switches. We demonstrate the practical relevance of our analysis using a case study with Open vSwitch and OpenStack. Employing a fuzzing methodology, we find several exploitable vulnerabilities in Open vSwitch. Using just one vulnerability we were able to create a worm that can compromise hundreds of servers in a matter of minutes. Our findings are applicable beyond virtual switches: NFV and high-performance fast path implementations face similar issues. This paper also studies various mitigation techniques and discusses how to redesign virtual switches for their integration.
Software Defined Networking (SDN) is a programmable network technology which aims to move an existing controller role in hardware equipment into an area of software. The control layer employs an application programming interface (API) to communicate with the application and infrastructure layers as it is centered between two layers. As the Southbound API used in communication with the infrastructure layer, the OpenFlow is defined as the current de factor standard in most SDN controllers. In contrast, the Northbound API used in communication with the application layer had no standard. Only REST API is used in Floodlight or OpenDaylight. Thus, the development in application area where SDN's true value lies to achieve network intelligence is not promoted well enough. In this paper, a gRPC protocol is proposed as useable Northbound API rather than REST API used in some controllers, and applicability of new standard as Northbound API is investigated.
This paper explores the potential of enabling SDN security and monitoring services by piggybacking on SDN reactive routing. As a case study, we implement and evaluate a piggybacking based intrusion prevention system called SDN-Defense. Our study of university WiFi traffic traces reveals that up to 73% of malicious flows can be detected by inspecting just the first three packets of a flow, and 90% of malicious flows from the first four packets. Using such empirical insights, we propose to forward the first K packets of each new flow to an augmented SDN controller for security inspection, where K is a dynamically configurable parameter. We characterize the cost-benefit trade-offs of SDN-Defense using real wireless traces and discuss potential scalability issues. Finally, we discuss other applications which can be enhanced by using our proposed piggybacking approach.
SDN is a new network architecture for control and data forwarding logic separation, able to provide a high degree of openness and programmability, with many advantages not available by traditional networks. But there are still some problems unsolved, for example, it is easy to cause the controller to be attacked due to the lack of verifying the source of the packet, and the limited range of match fields cannot meet the requirement of the precise control of network services etc. Aiming at the above problems, this paper proposes a SDN network security control forwarding mechanism based on cipher identification, when packets flow into and out of the network, the forwarding device must verify their source to ensure the user's non-repudiation and the authenticity of packets. Besides administrators control the data forwarding based on cipher identification, able to form network management and control capabilities based on human, material, business flow, and provide a new method and means for the future of Internet security.
Software Defined Networking (SDN) is an emerging paradigm that changes the way networks are managed by separating the control plane from data plane and making networks programmable. The separation brings about flexibility, automation, orchestration and offers savings in both capital and operational expenditure. Despite all the advantages offered by SDN it introduces new threats that did not exist before or were harder to exploit in traditional networks, making network penetration potentially easier. One of the key threat to SDN is the authentication and authorisation of network applications that control network behaviour (unlike the traditional network where network devices like routers and switches are autonomous and run proprietary software and protocols to control the network). This paper proposes a mechanism that helps the control layer authenticate network applications and set authorisation permissions that constrict manipulation of network resources.