Biblio
Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.
As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.
The exponential growth in the number of mobile devices, combined with the rapid demand for wireless services, has steadily stressed the wireless spectrum, calling for new techniques to improve spectrum utilization. A geo-location database has been proposed as a viable solution for wireless users to determine spectrum availability in cognitive radio networks. The protocol used by secondary users (SU) to request spectral availability for a specific location, time and duration, may reveal confidential information about these users. In this paper, we focus on SUs' location privacy in database-enabled wireless networks and propose a framework to address this threat. The basic tenet of the framework is obfuscation, whereby channel requests for valid locations are interwoven with requests for fake locations. Traffic redirection is also used to deliberately confuse potential query monitors from inferring users' location information. Within this framework, we propose two privacy-preserving schemes. The Master Device Enabled Location Privacy Preserving scheme utilizes trusted master devices to prevent leaking information of SUs' locations to attackers. The Crowd Sourced Location Privacy Preserving scheme builds a guided tour of randomly selected volunteers to deliver users channel availability queries and ensure location privacy. Security analysis and computational and communication overhead of these schemes are discussed.
In distributed systems, there is often a need to combine the heterogeneous access control policies to offer more comprehensive services to users in the local or national level. A large scale healthcare system is usually distributed in a computer network and might require sophisticated access control policies to protect the system. Therefore, the need for integrating the electronic healthcare systems might be important to provide a comprehensive care for patients while preserving patients' privacy and data security. However, there are major impediments in healthcare systems concerning not well-defined and flexible access control policy implementations, hindering the progress towards secure integrated systems. In this paper, we introduce an access control policy combination framework for EHR systems that preserves patients' privacy and ensures data security. We achieve our goal through an access control mechanism which handles multiple access control policies through a similarity analysis phase. In that phase, we evaluate different XACML policies to decide whether or not a policy combination is applicable. We have provided a case study to show the applicability of our proposed approach based on XACML. Our study results can be applied to the electronic health record (EHR) access control policy, which fosters interoperability and scalability among healthcare providers while preserving patients' privacy and data security.
Internet plays a crucial role in today's life, so the usage of online social network monotonically increasing. People can share multimedia information's fastly and keep in touch or communicate with friend's easily through online social network across the world. Security in authentication is a big challenge in online social network and authentication is a preliminary process for identifying legitimate user. Conventionally, we are using alphanumeric textbased password for authentication approach. But the main flaw points of text based password is highly vulnerable to attacks and difficulty of recalling password during authentication time due to the irregular use of passwords. To overcome the shortcoming of text passwords, we propose a Graphical Password authentication. An approach of Graphical Password is an authentication of amalgam of pictures. It is less vulnerable to attacks and human can easily recall pictures better than text. So the graphical password is a better alternative to text passwords. As the image uploads are increasing by users share through online site, privacy preserving has become a major problem. So we need a Caption Based Metadata Stratification of images for delivers an automatic suggestion of similar category already in database, it works by comparing the caption metadata of album with caption metadata already in database or extract the synonyms of caption metadata of new album for checking the similarity with caption metadata already in database. This stratification offers an enhanced automatic privacy prediction for uploaded images in online social network, privacy is an inevitable factor for uploaded images, and privacy violation is a major concern. So we propose an Automatic Policy Prediction for uploaded images that are classified by caption metadata. An automatic policy prediction is a hassle-free privacy setting proposed to the user.
There are billions of Internet of things (IoT) devices connecting to the Internet and the number is increasing. As a still ongoing technology, IoT can be used in different fields, such as agriculture, healthcare, manufacturing, energy, retailing and logistics. IoT has been changing our world and the way we live and think. However, IoT has no uniform architecture and there are different kinds of attacks on the different layers of IoT, such as unauthorized access to tags, tag cloning, sybil attack, sinkhole attack, denial of service attack, malicious code injection, and man in middle attack. IoT devices are more vulnerable to attacks because it is simple and some security measures can not be implemented. We analyze the privacy and security challenges in the IoT and survey on the corresponding solutions to enhance the security of IoT architecture and protocol. We should focus more on the security and privacy on IoT and help to promote the development of IoT.
Internet of things (IOT) is a kind of advanced information technology which has drawn societies' attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually suggested encryption algorithm has been simulated by MATLAB software and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.
Security Evaluation and Management (SEM) is considerably important process to protect the Embedded System (ES) from various kinds of security's exploits. In general, SEM's processes have some challenges, which limited its efficiency. Some of these challenges are system-based challenges like the hetero-geneity among system's components and system's size. Some other challenges are expert-based challenges like mis-evaluation possibility and experts non-continuous availability. Many of these challenges were addressed by the Multi Metric (MM) framework, which depends on experts' or subjective evaluation for basic evaluations. Despite of its productivity, subjective evaluation has some drawbacks (e.g. expert misevaluation) foster the need for considering objective evaluations in the MM framework. In addition, the MM framework is system centric framework, thus, by modelling complex and huge system using the MM framework a guide is needed indicating changes toward desirable security's requirements. This paper proposes extensions for the MM framework consider the usage of objective evaluations and work as guide for needed changes to satisfy desirable security requirements.
Security and privacy of big data becomes challenging as data grows and more accessible by more and more clients. Large-scale data storage is becoming a necessity for healthcare, business segments, government departments, scientific endeavors and individuals. Our research will focus on the privacy, security and how we can make sure that big data is secured. Managing security policy is a challenge that our framework will handle for big data. Privacy policy needs to be integrated, flexible, context-aware and customizable. We will build a framework to receive data from customer and then analyze data received, extract privacy policy and then identify the sensitive data. In this paper we will present the techniques for privacy policy which will be created to be used in our framework.
Increasing cyber-security presents an ongoing challenge to security professionals. Research continuously suggests that online users are a weak link in information security. This research explores the relationship between cyber-security and cultural, personality and demographic variables. This study was conducted in four different countries and presents a multi-cultural view of cyber-security. In particular, it looks at how behavior, self-efficacy and privacy attitude are affected by culture compared to other psychological and demographics variables (such as gender and computer expertise). It also examines what kind of data people tend to share online and how culture affects these choices. This work supports the idea of developing personality based UI design to increase users' cyber-security. Its results show that certain personality traits affect the user cyber-security related behavior across different cultures, which further reinforces their contribution compared to cultural effects.
This paper presents a framework for privacy-preserving video delivery system to fulfill users' privacy demands. The proposed framework leverages the inference channels in sensitive behavior prediction and object tracking in a video surveillance system for the sequence privacy protection. For such a goal, we need to capture different pieces of evidence which are used to infer the identity. The temporal, spatial and context features are extracted from the surveillance video as the observations to perceive the privacy demands and their correlations. Taking advantage of quantifying various evidence and utility, we let users subscribe videos with a viewer-dependent pattern. We implement a prototype system for off-line and on-line requirements in two typical monitoring scenarios to construct extensive experiments. The evaluation results show that our system can efficiently satisfy users' privacy demands while saving over 25% more video information compared to traditional video privacy protection schemes.
A smart city uses information technology to integrate and manage physical, social, and business infrastructures in order to provide better services to its dwellers while ensuring efficient and optimal utilization of available resources. With the proliferation of technologies such as Internet of Things (IoT), cloud computing, and interconnected networks, smart cities can deliver innovative solutions and more direct interaction and collaboration between citizens and the local government. Despite a number of potential benefits, digital disruption poses many challenges related to information security and privacy. This paper proposes a security framework that integrates the blockchain technology with smart devices to provide a secure communication platform in a smart city.
Most of the existing authentication protocols are based on either asymmetric cryptography like public-key infrastructure (PKI) or symmetric cryptography. The PKI-based authentication protocols are strongly recommended for solving security issues in VANETs. However, they have following shortcomings: (1) lengthy certificates lead to transmission and computation overheads, and (2) lack of privacy-preservation due to revealing of vehicle identity, communicated in broadcasting safety-message. Symmetric cryptography based protocols are faster because of a single secret key and simplicity; however, it does not ensure non-repudiation. In this paper, we present an Efficient, Scalable and Privacy-preserving Authentication (ESPA) protocol for secure vehicular ad hoc networks (VANETs). The protocol employs hybrid cryptography. In ESPA, the asymmetric PKI based pre-authentication and the symmetric hash message authentication code (HMAC) based authentication are adopted during vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communications, respectively. Extensive simulations are conducted to validate proposed ESPA protocol and compared with the existing work based on PKI and HMAC. The performance analysis showed that ESPA is more efficient, scalable and privacy-preserving secured protocol than the existing work.