Visible to the public Biblio

Filters: Keyword is Three-dimensional displays  [Clear All Filters]
2022-05-23
Iglesias, Maria Insa, Jenkins, Mark, Morison, Gordon.  2021.  An Enhanced Photorealistic Immersive System using Augmented Situated Visualization within Virtual Reality. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :514–515.
This work presents a system which allows image data and extracted features from a real-world location to be captured and modelled in a Virtual Reality (VR) environment combined with Augmented Situated Visualizations (ASV) overlaid and registered in a virtual environment. Combining these technologies with techniques from Data Science and Artificial Intelligence (AI)(such as image analysis and 3D reconstruction) allows the creation of a setting where remote locations can be modelled and interacted with from anywhere in the world. This Enhanced Photorealistic Immersive (EPI) system is highly adaptable to a wide range of use cases and users as it can be utilized to model and interact with any environment which can be captured as image data (such as training for operation in hazardous environments, accessibility solutions for exploration of historical/tourism locations and collaborative learning environments). A use case example focused on a structural examination of railway tunnels along with a pilot study is presented, which can demonstrate the usefulness of the EPI system.
Guo, Siyao, Fu, Yi.  2021.  Construction of immersive scene roaming system of exhibition hall based on virtual reality technology. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1029–1033.
On the basis of analyzing the development and application of virtual reality (VR) technology at home and abroad, and combining with the specific situation of the exhibition hall, this paper establishes an immersive scene roaming system of the exhibition hall. The system is completed by virtual scene modeling technology and virtual roaming interactive technology. The former uses modeling software to establish the basic model in the virtual scene, while the latter uses VR software to enable users to control their own roles to run smoothly in the roaming scene. In interactive roaming, this paper optimizes the A* pathfinding algorithm, uses binary heap to process data, and on this basis, further optimizes the pathfinding algorithm, so that when the pathfinding target is an obstacle, the pathfinder can reach the nearest place to the obstacle. Texture mapping technology, LOD technology and other related technologies are adopted in the modeling, thus finally realizing the immersive scene roaming system of the exhibition hall.
2022-05-06
Lokhande, Trupti, Sonekar, Shrikant, Wani, Aachal.  2021.  Development of an Algorithmic Approach for Hiding Sensitive Data and Recovery of Data based on Fingerprint Identification for Secure Cloud Storage. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). :800–805.
Information Security is a unified piece of information technology that has emerged as vibrant technology in the last two decades. To manage security, authentication assumes a significant part. Biometric is the physical unique identification as well as authentication for the third party. We have proposed the security model for preventing many attacks so we are used the innermost layer as a 3DES (Triple Encryption standard) cryptography algorithm that is providing 3- key protection as 64-bit and the outermost layer used the MD5 (Message Digest) algorithm. i. e. providing 128-bit protection as well as we is using fingerprint identification as physical security that is used in third-party remote integrity auditing. Remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depending on identity-based cryptography, which works on the convoluted testament of the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Wani, Aachal, Sonekar, Shrikant, Lokhande, Trupti.  2021.  Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
2022-05-05
Raheja, Nisha, Manocha, Amit Kumar.  2021.  An Efficient Encryption-Authentication Scheme for Electrocardiogram Data using the 3DES and Water Cycle Optimization Algorithm. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :10—14.

To share the recorded ECG data with the cardiologist in Golden Hours in an efficient and secured manner via tele-cardiology may save the lives of the population residing in rural areas of a country. This paper proposes an encryption-authentication scheme for secure the ECG data. The main contribution of this work is to generate a one-time padding key and deploying an encryption algorithm in authentication mode to achieve encryption and authentication. This is achieved by a water cycle optimization algorithm that generates a completely random one-time padding key and Triple Data Encryption Standard (3DES) algorithm for encrypting the ECG data. To validate the accuracy of the proposed encryption authentication scheme, experimental results were performed on standard ECG data and various performance parameters were calculated for it. The results show that the proposed algorithm improves security and passes the statistical key generation test.

2022-04-19
Ammari, Habib M..  2021.  Achieving Physical Security through K-Barrier Coverage in Three-Dimensional Stealthy Lattice Wireless Sensor Networks. 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :306–314.
Physical security is essential to safeguarding critical areas. Here, we focus on the physical security problem in three-dimensional (3D) stealthy lattice wireless sensor networks using a 3D sensor belt around a critical space. Specifically, we propose a theoretical framework to investigate the 3D k-barrier coverage problem, where any path crossing this belt intersects with the sensing range of at least k sensors. Precisely, we study this problem from a tiling viewpoint, where the sensing ranges of the sensors are touching (or kissing) each other. We analyze various 3D deterministic sensor deployment methods yielding simple cubic, body centered cubic, face centered cubic, and hexagonal close-packed lattice wireless sensor networks. First, using the concept of the unit cell covered volume ratio, we prove that none of these 3D lattices guarantee k-barrier coverage. Second, to remedy this problem, we consider the great rhombicuboctahedron (GR), a polyhedral space-filler. We introduce the concept of intruder's abstract paths along a 3D k-barrier covered belt, and compute their number. Also, we propose a polynomial representation for all abstract paths. In addition, we compute the number of sensors deployed over a 3D k-barrier covered belt using GR. Third, we corroborate our analysis with numerical and simulation results.
2022-03-14
Wang, Xindan, Chen, Qu, Li, Zhi.  2021.  A 3D Reconstruction Method for Augmented Reality Sandbox Based on Depth Sensor. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:844—849.
This paper builds an Augmented Reality Sandbox (AR Sandbox) system based on augmented reality technology, and performs a 3D reconstruction for the sandbox terrain using the depth sensor Microsoft Kinect in the AR Sandbox, as an entry point to pave the way for later development of related metaverse applications, such as the metaverse architecting and visual interactive modeling. The innovation of this paper is that for the AR Sandbox scene, a 3D reconstruction method based on depth sensor is proposed, which can automatically cut off the edge of the sandbox table in Kinect field of view, and accurately and completely reconstruct the sandbox terrain in Matlab.
2022-03-08
Markchit, Sarawut.  2021.  K-mean Index Learning for Multimedia Datasets. 2021 13th International Conference on Knowledge and Smart Technology (KST). :6—11.
Currently, one method to deal with the storage and computation of multimedia retrieval applications is an approximate nearest neighbor (ANN) search. Hashing algorithms and Vector quantization (VQ) are widely used in ANN search. So, K-mean clustering is a method of VQ that can solve those problems. With the increasing growth of multimedia data such as text view, image view, video view, audio view, and 3D view. Thus, it is a reason that why multimedia retrieval is very important. We can retrieve the results of each media type by inputting a query of that type. Even though many hashing algorithms and VQ techniques are proposed to produce a compact or short binary codes. In the real-time purposes the exhaustive search is impractical, and Hamming distance computation in the Hamming space suffers inaccurate results. The challenge of this paper is focusing on how to learn multimedia raw data or features representation to search on each media type for multimedia retrieval. So we propose a new search method that utilizes K-mean hash codes by computing the probability of a cluster in the index code. The proposed employs the index code from the K-mean cluster number that is converted to hash code. The inverted index table is constructed basing on the K-mean hash code. Then we can improve the original K-mean index accuracy and efficiency by learning a deep neural network (DNN). We performed the experiments on four benchmark multimedia datasets to retrieve each view such as 3D, image, video, text, and audio, where hash codes are produced by K-mean clustering methods. Our results show the effectiveness boost the performance on the baseline (exhaustive search).
2022-02-24
Zhang, Maojun, Zhu, Guangxu, Wang, Shuai, Jiang, Jiamo, Zhong, Caijun, Cui, Shuguang.  2021.  Accelerating Federated Edge Learning via Optimized Probabilistic Device Scheduling. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :606–610.
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload their updates at each communication round. This has led to an active research area in FEEL studying the optimal device scheduling policy for minimizing communication time. However, owing to the difficulty in quantifying the exact communication time, prior work in this area can only tackle the problem partially by considering either the communication rounds or per-round latency, while the total communication time is determined by both metrics. To close this gap, we make the first attempt in this paper to formulate and solve the communication time minimization problem. We first derive a tight bound to approximate the communication time through cross-disciplinary effort involving both learning theory for convergence analysis and communication theory for per-round latency analysis. Building on the analytical result, an optimized probabilistic scheduling policy is derived in closed-form by solving the approximate communication time minimization problem. It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves. The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
2022-01-25
Hehenberger, Simon, Tripathi, Veenu, Varma, Sachit, Elmarissi, Wahid, Caizzone, Stefano.  2021.  A Miniaturized All-GNSS Bands Antenna Array Incorporating Multipath Suppression for Robust Satellite Navigation on UAV Platforms. 2021 15th European Conference on Antennas and Propagation (EuCAP). :1—4.
Nowadays, an increasing trend to use autonomous Unmanned Aerial Vehicles (UAV) for applications like logistics as well as security and surveillance can be recorded. Autonomic UAVs require robust and precise navigation to ensure efficient and safe operation even in strong multipath environments and (intended) interference. The need for robust navigation on UAVs implies the necessary integration of low-cost, lightweight, and compact array antennas as well as structures for multipath mitigation into the UAV platform. This article investigates a miniaturized antenna array mounted on top of vertical choke rings for robust navigation purposes. The array employs four 3D printed elements based on dielectric resonators capable of operating in all GNSS bands while compact enough for mobile applications such as UAV.
Meyer, Fabian, Gehrke, Christian, Schäfer, Michael.  2021.  Evaluating User Acceptance using WebXR for an Augmented Reality Information System. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :418—419.
Augmented Reality has a long history and has seen major technical advantages in the last years. With WebXR, a new web standard, Mobile Augmented Reality (MAR) applications are now available in the web browser. With our work, we implemented an Augmented Reality Information System and conducted a case study to evaluate the user acceptance of such an application build with WebXR. Our results indicate that the user acceptance regarding web-based MAR applications for our specific use case seems to be given. With our proposed architecture we also lay the foundation for other AR information systems.
Lu, Lu, Duan, Pengshuai, Shen, Xukun, Zhang, Shijin, Feng, Huiyan, Flu, Yong.  2021.  Gaze-Pinch Menu: Performing Multiple Interactions Concurrently in Mixed Reality. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :536—537.
Performing an interaction using gaze and pinch has been certified as an efficient interactive method in Mixed Reality, for such techniques can provide users concise and natural experiences. However, executing a task with individual interactions gradually is inefficient in some application scenarios. In this paper, we propose the Hand-Pinch Menu, which core concept is to reduce unnecessary operations by combining several interactions. Users can continuously perform multiple interactions on a selected object concurrently without changing gestures by using this technique. The user study results show that our Gaze-Pinch Menu can improve operational efficiency effectively.
Azevedo, João, Faria, Pedro, Romero, Luís.  2021.  Framework for Creating Outdoors Augmented and Virtual Reality. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
In this article we propose the architecture of a system in which its central objective is focused on creating a complete framework for creating outdoor environments of Augmented Reality (AR) and Virtual Reality (VR) allowing its users to digitize reality for hypermedia format. Subsequently, there will be an internal process with the objective of merging / grouping these 3D models, thus enabling clear and intuitive navigation within infinite virtual realities (based on the captured real world). In this way, the user is able to create points of interest within their parallel realities, being able to navigate and traverse their new worlds through these points.
2022-01-10
Matsunami, Tomoaki, Uchida, Hidetsugu, Abe, Narishige, Yamada, Shigefumi.  2021.  Learning by Environment Clusters for Face Presentation Attack Detection. 2021 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–5.
Face recognition has been used widely for personal authentication. However, there is a problem that it is vulnerable to a presentation attack in which a counterfeit such as a photo is presented to a camera to impersonate another person. Although various presentation attack detection methods have been proposed, these methods have not been able to sufficiently cope with the diversity of the heterogeneous environments including presentation attack instruments (PAIs) and lighting conditions. In this paper, we propose Learning by Environment Clusters (LEC) which divides training data into some clusters of similar photographic environments and trains bona-fide and attack classification models for each cluster. Experimental results using Replay-Attack, OULU-NPU, and CelebA-Spoof show the EER of the conventional method which trains one classification model from all data was 20.0%, but LEC can achieve 13.8% EER when using binarized statistical image features (BSIFs) and support vector machine used as the classification method.
2021-09-30
Zhang, Zhiming, Yu, Qiaoyan.  2020.  Invariance Checking Based Trojan Detection Method for Three-Dimensional Integrated Circuits. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Recently literature indicates that stack based three-dimensional (3D) integration techniques may bring in new security vulnerabilities, such as new attack surfaces for hardware Trojan (HT) insertion. Compared to its two-dimensional counterpart (2DHTs), a 3D hardware Trojan (3DHT) could be stealthily distributed in multiple tiers in a single 3D chip. Although the comprehensive models for 3DHTs are available in recent work, there still lacks 3DHT detection and mitigation methods, especially run-time countermeasures against 3DHTs. This work proposes to leverage the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier hardware Trojans in stacked multi-tier chips. An invariance checking method is further proposed to detect the Trojans that induce malicious NoC packets or facilitate information leak. The proposed method is successfully deployed in NoC routers and achieves a Trojan detection rate of over 94%. The synthesis result of a hardened router at a 45nm technology node shows that the proposed invariance checking only increases the area by 6.49% and consumes 3.76% more dynamic power than an existing 3D router. The NoC protected with the proposed method is applied to the image authentication in a 3D system. The case study indicates that the proposed security measure reduces the correlation coefficient by up to 31% over the baseline.
2021-08-03
Yang, Jianguo, Lei, Dengyun, Chen, Deyang, Li, Jing, Jiang, Haijun, Ding, Qingting, Luo, Qing, Xue, Xiaoyong, Lv, Hangbing, Zeng, Xiaoyang et al..  2020.  A Machine-Learning-Resistant 3D PUF with 8-layer Stacking Vertical RRAM and 0.014% Bit Error Rate Using In-Cell Stabilization Scheme for IoT Security Applications. 2020 IEEE International Electron Devices Meeting (IEDM). :28.6.1–28.6.4.
In this work, we propose and demonstrate a multi-layer 3-dimensional (3D) vertical RRAM (VRRAM) PUF with in-cell stabilization scheme to improve both cost efficiency and reliability. An 8-layer VRRAM array was manufactured with excellent uniformity and good endurance of \textbackslashtextgreater107. Apart from the variation in RRAM resistance, enhanced randomness is obtained thanks to the parasitic IR drop and abundant sneak current paths in 3D VRRAM. To deal with the common issue of unstable bits in PUF output, in-cell stabilization is proposed by first employing asymmetric biasing to detect the unstable bits and then exploiting reprogramming to expand the deviation to stabilize the output. The bit error rate is reduced by \textbackslashtextgreater7X (68X) for 3(5) times reprogramming. The proposed PUF features excellent resistance against machine learning attack and passes both National Institute of Standards and Technology (NIST) 800-22 and NIST 800-90B test suites.
2021-05-18
Sinhabahu, Nadun, Wimalaratne, Prasad, Wijesiriwardana, Chaman.  2020.  Secure Codecity with Evolution: Visualizing Security Vulnerability Evolution of Software Systems. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :1–2.
The analysis of large-scale software and finding security vulnerabilities while its evolving is difficult without using supplementary tools, because of the size and complexity of today's systems. However just by looking at a report, doesn't transmit the overall picture of the system in terms of security vulnerabilities and its evolution throughout the project lifecycle. Software visualization is a program comprehension technique used in the context of the present and explores large amounts of information precisely. For the analysis of security vulnerabilities of complex software systems, Secure Codecity with Evolution is an interactive 3D visualization tool that can be utilized. Its studies techniques and methods are used for graphically illustrating security aspects and the evolution of software. The Main goal of the proposed Framework defined as uplift, simplify, and clarify the mental representation that a software engineer has of a software system and its evolution in terms of its security. Static code was visualised based on a city metaphor, which represents classes as buildings and packages as districts of a city. Identified Vulnerabilities were represented in a different color according to the severity. To visualize a number of different aspects, A large variety of options were given. Users can evaluate the evolution of the security vulnerabilities of a system on several versions using Matrices provided which will help users go get an overall understanding about security vulnerabilities varies with different versions of software. This framework was implemented using SonarQube for software vulnerability detection and ThreeJs for implementing the City Metaphor. The evaluation results evidently show that our framework surpasses the existing tools in terms of accuracy, efficiency and usability.
2021-03-29
Makovetskii, A., Kober, V., Voronin, A., Zhernov, D..  2020.  Facial recognition and 3D non-rigid registration. 2020 International Conference on Information Technology and Nanotechnology (ITNT). :1—4.

One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.

2021-03-09
elazm, L. A. Abou, Ibrahim, S., Egila, M. G., Shawkey, H., Elsaid, M. K. H., El-Shafai, W., El-Samie, F. E. Abd.  2020.  Hardware Implementation of Cancellable Biometric Systems. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1145–1152.

The use of biometrics in security applications may be vulnerable to several challenges of hacking. Thus, the emergence of cancellable biometrics becomes a suitable solution to this problem. This paper presents a one-way cancellable biometric transform that depends on 3D chaotic maps for face and fingerprint encryption. It aims to avoid cloning of original biometrics and allow the templates used by each user in different applications to be variable. The permutations achieved with the chaotic maps guarantee high security of the biometric templates, especially with the 3D implementation of the encryption algorithm. In addition, the paper presents a hardware implementation for this framework. The proposed algorithm also achieves good performance in the presence of low and moderate levels of noise. An experimental version of the proposed cancellable biometric system has been applied on FPGA model. The obtained results achieve a powerful performance of the proposed cancellable biometric system.

2021-02-08
Moussa, Y., Alexan, W..  2020.  Message Security Through AES and LSB Embedding in Edge Detected Pixels of 3D Images. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :224—229.

This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.

Chen, J., Liao, S., Hou, J., Wang, K., Wen, J..  2020.  GST-GCN: A Geographic-Semantic-Temporal Graph Convolutional Network for Context-aware Traffic Flow Prediction on Graph Sequences. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1604–1609.
Traffic flow prediction is an important foundation for intelligent transportation systems. The traffic data are generated from a traffic network and evolved dynamically. So spatio-temporal relation exploration plays a support role on traffic data analysis. Most researches focus on spatio-temporal information fusion through a convolution operation. To the best of our knowledge, this is the first work to suggest that it is necessary to distinguish the two aspects of spatial correlations and propose the two types of spatial graphs, named as geographic graph and semantic graph. Then two novel stereo convolutions with irregular acceptive fields are proposed. The geographic-semantic-temporal contexts are dynamically jointly captured through performing the proposed convolutions on graph sequences. We propose a geographic-semantic-temporal graph convolutional network (GST-GCN) model that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.
2021-02-03
Velaora, M., Roy, R. van, Guéna, F..  2020.  ARtect, an augmented reality educational prototype for architectural design. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :110—115.

ARtect is an Augmented Reality application developed with Unity 3D, which envisions an educational interactive and immersive tool for architects, designers, researchers, and artists. This digital instrument renders the competency to visualize custom-made 3D models and 2D graphics in interior and exterior environments. The user-friendly interface offers an accurate insight before the materialization of any architectural project, enabling evaluation of the design proposal. This practice could be integrated into learning architectural design process, saving resources of printed drawings, and 3D carton models during several stages of spatial conception.

Lee, J..  2020.  CanvasMirror: Secure Integration of Third-Party Libraries in a WebVR Environment. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :75—76.

Web technology has evolved to offer 360-degree immersive browsing experiences. This new technology, called WebVR, enables virtual reality by rendering a three-dimensional world on an HTML canvas. Unfortunately, there exists no browser-supported way of sharing this canvas between different parties. As a result, third-party library providers with ill intent (e.g., stealing sensitive information from end-users) can easily distort the entire WebVR site. To mitigate the new threats posed in WebVR, we propose CanvasMirror, which allows publishers to specify the behaviors of third-party libraries and enforce this specification. We show that CanvasMirror effectively separates the third-party context from the host origin by leveraging the privilege separation technique and safely integrates VR contents on a shared canvas.

Sabu, R., Yasuda, K., Kato, R., Kawaguchi, S., Iwata, H..  2020.  Does visual search by neck motion improve hemispatial neglect?: An experimental study using an immersive virtual reality system 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :262—267.

Unilateral spatial neglect (USN) is a higher cognitive dysfunction that can occur after a stroke. It is defined as an impairment in finding, reporting, reacting to, and directing stimuli opposite the damaged side of the brain. We have proposed a system to identify neglected regions in USN patients in three dimensions using three-dimensional virtual reality. The objectives of this study are twofold: first, to propose a system for numerically identifying the neglected regions using an object detection task in a virtual space, and second, to compare the neglected regions during object detection when the patient's neck is immobilized (‘fixed-neck’ condition) versus when the neck can be freely moved to search (‘free-neck’ condition). We performed the test using an immersive virtual reality system, once with the patient's neck fixed and once with the patient's neck free to move. Comparing the results of the study in two patients, we found that the neglected areas were similar in the fixed-neck condition. However, in the free-neck condition, one patient's neglect improved while the other patient’s neglect worsened. These results suggest that exploratory ability affects the symptoms of USN and is crucial for clinical evaluation of USN patients.

Cecotti, H., Richard, Q., Gravellier, J., Callaghan, M..  2020.  Magnetic Resonance Imaging Visualization in Fully Immersive Virtual Reality. 2020 6th International Conference of the Immersive Learning Research Network (iLRN). :205—209.

The availability of commercial fully immersive virtual reality systems allows the proposal and development of new applications that offer novel ways to visualize and interact with multidimensional neuroimaging data. We propose a system for the visualization and interaction with Magnetic Resonance Imaging (MRI) scans in a fully immersive learning environment in virtual reality. The system extracts the different slices from a DICOM file and presents the slices in a 3D environment where the user can display and rotate the MRI scan, and select the clipping plane in all the possible orientations. The 3D environment includes two parts: 1) a cube that displays the MRI scan in 3D and 2) three panels that include the axial, sagittal, and coronal views, where it is possible to directly access a desired slice. In addition, the environment includes a representation of the brain where it is possible to access and browse directly through the slices with the controller. This application can be used both for educational purposes as an immersive learning tool, and by neuroscience researchers as a more convenient way to browse through an MRI scan to better analyze 3D data.