Biblio
Trust Relationships have shown great potential to improve recommendation quality, especially for cold start and sparse users. Since each user trust their friends in different degrees, there are numbers of works been proposed to take Trust Strength into account for recommender systems. However, these methods ignore the information of trust directions between users. In this paper, we propose a novel method to adaptively learn directive trust strength to improve trust-aware recommender systems. Advancing previous works, we propose to establish direction of trust strength by modeling the implicit relationships between users with roles of trusters and trustees. Specially, under new trust strength with directions, how to compute the directive trust strength is becoming a new challenge. Therefore, we present a novel method to adaptively learn directive trust strengths in a unified framework by enforcing the trust strength into range of [0, 1] through a mapping function. Our experiments on Epinions and Ciao datasets demonstrate that the proposed algorithm can effectively outperform several state-of-art algorithms on both MAE and RMSE metrics.
Among the various challenges faced by the P2P file sharing systems like BitTorrent, the most common attack on the basic foundation of such systems is: Free-riding. Generally, free-riders are the users in the file sharing network who avoid contributing any resources but tend to consume the resources unethically from the P2P network whereas white-washers are more specific category of free-riders that voluntarily leave the system in a frequent fashion and appearing again and again with different identities to escape from the penal actions imposed by the network. BitTorrent being a collaborative distributed platform requires techniques for discouraging and punishing such user behavior. In this paper, we propose that ``Instead of punishing, we may focus more on rewarding the honest peers''. This approach could be presented as an alternative to other mechanisms of rewarding the peers like tit-for-tat [10], reciprocity based etc., built for the BitTorrent platform. The prime objective of BitTrusty is: providing incentives to the cooperative peers by rewarding in terms of cryptocoins based on blockchain. We have anticipated three ways of achieving the above defined objective. We are further investigating on how to integrate these two technologies of distributed systems viz. P2P file sharing systems and blockchain, and with this new paradigm, interesting research areas can be further developed, both in the field of P2P cryptocurrency networks and also when these networks are combined with other distributed scenarios.
Searchable encryption (SE) supports privacy-preserving searches over encrypted data. Recent studies on SE have focused on improving efficiency of the schemes. However, it was shown that most of the previous SE schemes could reveal the client's queries even if they are encrypted, thereby leading to privacy violation. In order to solve the problem, several forward private SE schemes have been proposed in a single client environment. However, the previous forward private SE schemes have never been analyzed in multi-client settings. In this paper, we briefly review the previous forward private SE schemes. Then, we conduct a comparative analysis of them in terms of performance and forward privacy. Our analysis demonstrates the previous forward secure SE schemes highly depend on the file-counter. Lastly, we show that they are not scalable in multi-client settings due to the performance and security issue from the file-counter.
The healthcare sector is exploring the incorporation of digital solutions in order to improve access, reduce costs, increase quality and enhance their capacity in reaching a higher number of citizens. However, this opens healthcare organisations' systems to external elements used within or beyond their premises, new risks and vulnerabilities in what regards cyber threats and incidents. We propose the creation of a Security Assessment as a Service (SAaaS) crosslayered system that is able to identify vulnerabilities and proactively assess and mitigate threats in an IT healthcare ecosystem exposed to external devices and interfaces, considering that most users are not experts (even technologically illiterate") in cyber security and, thus, unaware of security tactics or policies whatsoever. The SAaaS can be integrated in an IT healthcare environment allowing the monitoring of existing and new devices, the limitation of connectivity and privileges to new devices, assess a device's cybersecurity risk and - based on the device's behaviour - the assignment and revoking of privileges. The SAaaS brings a controlled cyber aware environment that assures security, confidentiality and trust, even in the presence of non-trusted devices and environments.
Anomaly detection on security logs is receiving more and more attention. Authentication events are an important component of security logs, and being able to produce trustful and accurate predictions minimizes the effort of cyber-experts to stop false attacks. Observed events are classified into Normal, for legitimate user behavior, and Malicious, for malevolent actions. These classes are consistently excessively imbalanced which makes the classification problem harder; in the commonly used Los Alamos dataset, the malicious class comprises only 0.00033% of the total. This work proposes a novel method to extract advanced composite features, and a supervised learning technique for classifying authentication logs trustfully; the models are Random Forest, LogitBoost, Logistic Regression, and ultimately Majority Voting which leverages the predictions of the previous models and gives the final prediction for each authentication event. We measure the performance of our experiments by using the False Negative Rate and False Positive Rate. In overall we achieve 0 False Negative Rate (i.e. no attack was missed), and on average a False Positive Rate of 0.0019.
In Vehicle-to-Vehicle (V2V) communications, malicious actors may spread false information to undermine the safety and efficiency of the vehicular traffic stream. Thus, vehicles must determine how to respond to the contents of messages which maybe false even though they are authenticated in the sense that receivers can verify contents were not tampered with and originated from a verifiable transmitter. Existing solutions to find appropriate actions are inadequate since they separately address trust and decision, require the honest majority (more honest ones than malicious), and do not incorporate driver preferences in the decision-making process. In this work, we propose a novel trust-aware decision-making framework without requiring an honest majority. It securely determines the likelihood of reported road events despite the presence of false data, and consequently provides the optimal decision for the vehicles. The basic idea of our framework is to leverage the implied effect of the road event to verify the consistency between each vehicle's reported data and actual behavior, and determine the data trustworthiness and event belief by integrating the Bayes' rule and Dempster Shafer Theory. The resulting belief serves as inputs to a utility maximization framework focusing on both safety and efficiency. This framework considers the two basic necessities of the Intelligent Transportation System and also incorporates drivers' preferences to decide the optimal action. Simulation results show the robustness of our framework under the multiple-vehicle attack, and different balances between safety and efficiency can be achieved via selecting appropriate human preference factors based on the driver's risk-taking willingness.
Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.
Trustworthiness is a paramount concern for users and customers in the selection of a software solution, specially in the context of complex and dynamic environments, such as Cloud and IoT. However, assessing and benchmarking trustworthiness (worthiness of software for being trusted) is a challenging task, mainly due to the variety of application scenarios (e.g., businesscritical, safety-critical), the large number of determinative quality attributes (e.g., security, performance), and last, but foremost, due to the subjective notion of trust and trustworthiness. In this paper, we present trustworthiness as a measurable notion in relative terms based on security attributes and propose an approach for the assessment and benchmarking of software. The main goal is to build a trustworthiness assessment model based on software metrics (e.g., Cyclomatic Complexity, CountLine, CBO) that can be used as indicators of software security. To demonstrate the proposed approach, we assessed and ranked several files and functions of the Mozilla Firefox project based on their trustworthiness score and conducted a survey among several software security experts in order to validate the obtained rank. Results show that our approach is able to provide a sound ranking of the benchmarked software.
The Machine Type Communication Devices (MTCDs) are usually based on Internet Protocol (IP), which can cause billions of connected objects to be part of the Internet. The enormous amount of data coming from these devices are quite heterogeneous in nature, which can lead to security issues, such as injection attacks, ballot stuffing, and bad mouthing. Consequently, this work considers machine learning trust evaluation as an effective and accurate option for solving the issues associate with security threats. In this paper, a comparative analysis is carried out with five different machine learning approaches: Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN), and Random Forest (RF). As a critical element of the research, the recommendations consider different Machine-to-Machine (M2M) communication nodes with regard to their ability to identify malicious and honest information. To validate the performances of these models, two trust computation measures were used: Receiver Operating Characteristics (ROCs), Precision and Recall. The malicious data was formulated in Matlab. A scenario was created where 50% of the information were modified to be malicious. The malicious nodes were varied in the ranges of 10%, 20%, 30%, 40%, and the results were carefully analyzed.
Security is a key concern in Internet of Things (IoT) designs. In a heterogeneous and complex environment, service providers and service requesters must trust each other. On-off attack is a sophisticated trust threat in which a malicious device can perform good and bad services randomly to avoid being rated as a low trust node. Some countermeasures demands prior level of trust knowing and time to classify a node behavior. In this paper, we introduce a Smart Middleware that automatically assesses the IoT resources trust, evaluating service providers attributes to protect against On-off attacks.
The Blockchain is an emerging paradigm that could solve security and trust issues for Internet of Things (IoT) platforms. We recently introduced in an IETF draft (“Blockchain Transaction Protocol for Constraint Nodes”) the BIoT paradigm, whose main idea is to insert sensor data in blockchain transactions. Because objects are not logically connected to blockchain platforms, controller entities forward all information needed for transaction forgery. Never less in order to generate cryptographic signatures, object needs some trusted computing resources. In previous papers we proposed the Four-Quater Architecture integrating general purpose unit (GPU), radio SoC, sensors/actuators and secure elements including TLS/DTLS stacks. These secure microcontrollers also manage crypto libraries required for blockchain operation. The BIoT concept has four main benefits: publication/duplication of sensors data in public and distributed ledgers, time stamping by the blockchain infrastructure, data authentication, and non repudiation.
As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).
The aim of this paper is to present a fresh methodology of improved evidence synthesis for assessing software trustworthiness, which can unwind collisions stemming from proofs and these proofs' own uncertainties. To achieve this end, the paper, on the ground of ISO/IEC 9126 and web software attributes, models the indicator framework by factor analysis. Then, the paper conducts an calculation of the weight for each indicator via the technique of structural entropy and makes a fuzzy judgment matrix concerning specialists' comments. This study performs a computation of scoring and grade regarding software trustworthiness by using of the criterion concerning confidence degree discernment and comes up with countermeasures to promote trustworthiness. Relying on online accounting software, this study makes an empirical analysis to further confirm validity and robustness. This paper concludes with pointing out limitations.
Industrial cluster is an important organization form and carrier of development of small and medium-sized enterprises, and information service platform is an important facility of industrial cluster. Improving the credibility of the network platform is conducive to eliminate the adverse effects of distrust and information asymmetry on industrial clusters. The decentralization, transparency, openness, and intangibility of block chain technology make it an inevitable choice for trustworthiness optimization of industrial cluster network platform. This paper first studied on trusted standard of industry cluster network platform and construct a new trusted framework of industry cluster network platform. Then the paper focus on trustworthiness optimization of data layer and application layer of the platform. The purpose of this paper is to build an industrial cluster network platform with data access, information trustworthiness, function availability, high-speed and low consumption, and promote the sustainable and efficient development of industrial cluster.
Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.
Cyber-physical systems (CPS) and their Internet of Things (IoT) components are repeatedly subject to various attacks targeting weaknesses in their firmware. For that reason emerges an imminent demand for secure update mechanisms that not only include specific systems but cover all parts of the critical infrastructure. In this paper we introduce a theoretical concept for a secure CPS device update and verification mechanism and provide information on handling hardware-based security incorporating trusted platform modules (TPM) on those CPS devices. We will describe secure communication channels by state of the art technology and also integrity measurement mechanisms to ensure the system is in a known state. In addition, a multi-level fail-over concept is presented, ensuring continuous patching to minimize the necessity of restarting those systems.
Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.