Visible to the public Biblio

Found 283 results

Filters: Keyword is Trusted Computing  [Clear All Filters]
2020-12-07
Xia, H., Xiao, F., Zhang, S., Hu, C., Cheng, X..  2019.  Trustworthiness Inference Framework in the Social Internet of Things: A Context-Aware Approach. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :838–846.
The concept of social networking is integrated into Internet of things (IoT) to socialize smart objects by mimicking human behaviors, leading to a new paradigm of Social Internet of Things (SIoT). A crucial problem that needs to be solved is how to establish reliable relationships autonomously among objects, i.e., building trust. This paper focuses on exploring an efficient context-aware trustworthiness inference framework to address this issue. Based on the sociological and psychological principles of trust generation between human beings, the proposed framework divides trust into two types: familiarity trust and similarity trust. The familiarity trust can be calculated by direct trust and recommendation trust, while the similarity trust can be calculated based on external similarity trust and internal similarity trust. We subsequently present concrete methods for the calculation of different trust elements. In particular, we design a kernel-based nonlinear multivariate grey prediction model to predict the direct trust of a specific object, which acts as the core module of the entire framework. Besides, considering the fuzziness and uncertainty in the concept of trust, we introduce the fuzzy logic method to synthesize these trust elements. The experimental results verify the validity of the core module and the resistance to attacks of this framework.
Challagidad, P. S., Birje, M. N..  2019.  Determination of Trustworthiness of Cloud Service Provider and Cloud Customer. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :839–843.
In service-oriented computing environment (e.g. cloud computing), Cloud Customers (CCs) and Cloud Service Providers (CSPs) require to calculate the trust ranks of impending partner prior to appealing in communications. Determining trustworthiness dynamically is a demanding dilemma in an open and dynamic environment (such as cloud computing) because of many CSPs providing same types of services. Presently, there are very less number of dynamic trust evaluation scheme that permits CCs to evaluate CSPs trustworthiness from multi-dimensional perspectives. Similarly, there is no scheme that permits CSPs to evaluate trustworthiness of CCs. This paper proposes a Multidimensional Dynamic Trust Evaluation Scheme (MDTES) that facilitates CCs to evaluate the trustworthiness of CSPs from various viewpoints. Similar approach can be employed by CSPs to evaluate the trustworthiness of CCs. The proposed MDTES helps CCs to choose trustworthy CSP and to have desired QoS requirements and CSPs to choose desired and legal CCs. The simulation results illustrate the MDTES is dynamic and steady in distinguishing trustworthy and untrustworthy CSPs and CCs.
Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., Wesemeyer, S..  2019.  A Symbolic Analysis of ECC-Based Direct Anonymous Attestation. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :127–141.
Direct Anonymous Attestation (DAA) is a cryptographic scheme that provides Trusted Platform Module TPM-backed anonymous credentials. We develop Tamarin modelling of the ECC-based version of the protocol as it is standardised and provide the first mechanised analysis of this standard. Our analysis confirms that the scheme is secure when all TPMs are assumed honest, but reveals a break in the protocol's expected authentication and secrecy properties for all TPMs even if only one is compromised. We propose and formally verify a minimal fix to the standard. In addition to developing the first formal analysis of ECC-DAA, the paper contributes to the growing body of work demonstrating the use of formal tools in supporting standardisation processes for cryptographic protocols.
Sundar, S., Yellai, P., Sanagapati, S. S. S., Pradhan, P. C., Y, S. K. K. R..  2019.  Remote Attestation based Software Integrity of IoT devices. 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–4.
Internet of Things is the new paradigm towards which the world is moving today. As these devices proliferate, security issues at these scales become more and more intimidating. Traditional approach like an antivirus does not work well with these devices and there is a need to look for a more trusted solution. For a device with reasonable computational power, we use a software trusted platform module for the cryptographic operations. In this paper, we have developed a model to remotely attest to the integrity of the processes running in the device. We have also explored the various features of the TPM (Trusted Platform Module) to gain insight into its working and also to ascertain those which can make this process better. This model depends on the server and the TPM to behave as roots of trust for this model. The client computes the HMAC (Hashed Message Authentication Code) values and appends a nonce and sends these values periodically to the server via asymmetric encryption. The HMAC values are verified by the server by comparing with its known good values (KGV) and the trustworthiness of the process is determined and accordingly an authorization response is sent.
Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee, S., Marochko, A., Mattoon, D., Spiger, R., Thom, S..  2019.  Dominance as a New Trusted Computing Primitive for the Internet of Things. 2019 IEEE Symposium on Security and Privacy (SP). :1415–1430.
The Internet of Things (IoT) is rapidly emerging as one of the dominant computing paradigms of this decade. Applications range from in-home entertainment to large-scale industrial deployments such as controlling assembly lines and monitoring traffic. While IoT devices are in many respects similar to traditional computers, user expectations and deployment scenarios as well as cost and hardware constraints are sufficiently different to create new security challenges as well as new opportunities. This is especially true for large-scale IoT deployments in which a central entity deploys and controls a large number of IoT devices with minimal human interaction. Like traditional computers, IoT devices are subject to attack and compromise. Large IoT deployments consisting of many nearly identical devices are especially attractive targets. At the same time, recovery from root compromise by conventional means becomes costly and slow, even more so if the devices are dispersed over a large geographical area. In the worst case, technicians have to travel to all devices and manually recover them. Data center solutions such as the Intelligent Platform Management Interface (IPMI) which rely on separate service processors and network connections are not only not supported by existing IoT hardware, but are unlikely to be in the foreseeable future due to the cost constraints of mainstream IoT devices. This paper presents CIDER, a system that can recover IoT devices within a short amount of time, even if attackers have taken root control of every device in a large deployment. The recovery requires minimal manual intervention. After the administrator has identified the compromise and produced an updated firmware image, he/she can instruct CIDER to force the devices to reset and to install the patched firmware on the devices. We demonstrate the universality and practicality of CIDER by implementing it on three popular IoT platforms (HummingBoard Edge, Raspberry Pi Compute Module 3 and Nucleo-L476RG) spanning the range from high to low end. Our evaluation shows that the performance overhead of CIDER is generally negligible.
Hamadeh, H., Tyagi, A..  2019.  Physical Unclonable Functions (PUFs) Entangled Trusted Computing Base. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :177–180.
The center-piece of this work is a software measurement physical unclonable function (PUF). It measures processor chip ALU silicon biometrics in a manner similar to all PUFs. Additionally, it composes the silicon measurement with the data-dependent delay of a particular program instruction in a way that is difficult to decompose through a mathematical model. This approach ensures that each software instruction is measured if computed. The SW-PUF measurements bind the execution of software to a specific processor with a corresponding certificate. This makes the SW-PUF a promising candidate for applications requiring Trusted Computing. For instance, it could measure the integrity of an execution path by generating a signature that is unique to the specific program execution path and the processor chip. We present an area and energy-efficient scheme based on the SW-PUF to provide a more robust root of trust for measurement than the existing trusted platform module (TPM). To explore the feasibility of the proposed design, the SW-PUF has been implemented in HSPICE using 45 nm technology and evaluated on the FPGA platform.
Yekini, T. Akeem, Jaafar, F., Zavarsky, P..  2019.  Study of Trust at Device Level of the Internet of Things Architecture. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :150–155.
In the Internet of Things architecture, devices are frequently connected to the Internet either directly or indirectly. However, many IoT devices lack built-in security features such as device level encryption, user authentication and basic firewall protection. This paper discusses security risks in the layers of general Internet of Things architecture and shows examples of potential risks at each level of the architecture. The paper also compares IoT security solutions provided by three major vendors and shows that the solutions are mutually complementary. Nevertheless, none of the examined IoT solutions provides security at the device level of the IoT architecture model. In order to address risks at the device level of the architecture, an implementation of Trusted Platform Module and Unique Device Identifier on IoT devices and gateways for encryption, authentication and device management is advocated in the paper.
Qian, Y..  2019.  Research on Trusted Authentication Model and Mechanism of Data Fusion. 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). :479–482.
Firstly, this paper analyses the technical foundation of single sign-on solution of unified authentication platform, and analyses the advantages and disadvantages of each solution. Secondly, from the point of view of software engineering, such as function requirement, performance requirement, development mode, architecture scheme, technology development framework and system configuration environment of the unified authentication platform, the unified authentication platform is analyzed and designed, and the database design and system design framework of the system are put forward according to the system requirements. Thirdly, the idea and technology of unified authentication platform based on JA-SIG CAS are discussed, and the design and implementation of each module of unified authentication platform based on JA-SIG CAS are analyzed, which has been applied in ship cluster platform.
2020-12-02
Wang, Q., Zhao, W., Yang, J., Wu, J., Hu, W., Xing, Q..  2019.  DeepTrust: A Deep User Model of Homophily Effect for Trust Prediction. 2019 IEEE International Conference on Data Mining (ICDM). :618—627.

Trust prediction in online social networks is crucial for information dissemination, product promotion, and decision making. Existing work on trust prediction mainly utilizes the network structure or the low-rank approximation of a trust network. These approaches can suffer from the problem of data sparsity and prediction accuracy. Inspired by the homophily theory, which shows a pervasive feature of social and economic networks that trust relations tend to be developed among similar people, we propose a novel deep user model for trust prediction based on user similarity measurement. It is a comprehensive data sparsity insensitive model that combines a user review behavior and the item characteristics that this user is interested in. With this user model, we firstly generate a user's latent features mined from user review behavior and the item properties that the user cares. Then we develop a pair-wise deep neural network to further learn and represent these user features. Finally, we measure the trust relations between a pair of people by calculating the user feature vector cosine similarity. Extensive experiments are conducted on two real-world datasets, which demonstrate the superior performance of the proposed approach over the representative baseline works.

Narang, S., Byali, M., Dayama, P., Pandit, V., Narahari, Y..  2019.  Design of Trusted B2B Market Platforms using Permissioned Blockchains and Game Theory. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :385—393.

Trusted collaboration satisfying the requirements of (a) adequate transparency and (b) preservation of privacy of business sensitive information is a key factor to ensure the success and adoption of online business-to-business (B2B) collaboration platforms. Our work proposes novel ways of stringing together game theoretic modeling, blockchain technology, and cryptographic techniques to build such a platform for B2B collaboration involving enterprise buyers and sellers who may be strategic. The B2B platform builds upon three ideas. The first is to use a permissioned blockchain with smart contracts as the technical infrastructure for building the platform. Second, the above smart contracts implement deep business logic which is derived using a rigorous analysis of a repeated game model of the strategic interactions between buyers and sellers to devise strategies to induce honest behavior from buyers and sellers. Third, we present a formal framework that captures the essential requirements for secure and private B2B collaboration, and, in this direction, we develop cryptographic regulation protocols that, in conjunction with the blockchain, help implement such a framework. We believe our work is an important first step in the direction of building a platform that enables B2B collaboration among strategic and competitive agents while maximizing social welfare and addressing the privacy concerns of the agents.

Vaka, A., Manasa, G., Sameer, G., Das, B..  2019.  Generation And Analysis Of Trust Networks. 2019 1st International Conference on Advances in Information Technology (ICAIT). :443—448.

Trust is known to be a key component in human social relationships. It is trust that defines human behavior with others to a large extent. Generative models have been extensively used in social networks study to simulate different characteristics and phenomena in social graphs. In this work, an attempt is made to understand how trust in social graphs can be combined with generative modeling techniques to generate trust-based social graphs. These generated social graphs are then compared with the original social graphs to evaluate how trust helps in generative modeling. Two well-known social network data sets i.e. the soc-Bitcoin and the wiki administrator network data sets are used in this work. Social graphs are generated from these data sets and then compared with the original graphs along with other standard generative modeling techniques to see how trust is a good component in this. Other Generative modeling techniques have been available for a while but this investigation with the real social graph data sets validate that trust can be an important factor in generative modeling.

Wang, W., Xuan, S., Yang, W., Chen, Y..  2019.  User Credibility Assessment Based on Trust Propagation in Microblog. 2019 Computing, Communications and IoT Applications (ComComAp). :270—275.

Nowadays, Microblog has become an important online social networking platform, and a large number of users share information through Microblog. Many malicious users have released various false news driven by various interests, which seriously affects the availability of Microblog platform. Therefore, the evaluation of Microblog user credibility has become an important research issue. This paper proposes a microblog user credibility evaluation algorithm based on trust propagation. In view of the high consumption and low precision caused by malicious users' attacking algorithms and manual selection of seed sets by establishing false social relationships, this paper proposes two optimization strategies: pruning algorithm based on social activity and similarity and based on The seed node selection algorithm of clustering. The pruning algorithm can trim off the attack edges established by malicious users and normal users. The seed node selection algorithm can efficiently select the highly available seed node set, and finally use the user social relationship graph to perform the two-way propagation trust scoring, so that the low trusted user has a lower trusted score and thus identifies the malicious user. The related experiments verify the effectiveness of the trustworthiness-based user credibility evaluation algorithm in the evaluation of Microblog user credibility.

Abeysekara, P., Dong, H., Qin, A. K..  2019.  Machine Learning-Driven Trust Prediction for MEC-Based IoT Services. 2019 IEEE International Conference on Web Services (ICWS). :188—192.

We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.

Niz, D. de, Andersson, B., Klein, M., Lehoczky, J., Vasudevan, A., Kim, H., Moreno, G..  2019.  Mixed-Trust Computing for Real-Time Systems. 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :1—11.

Verifying complex Cyber-Physical Systems (CPS) is increasingly important given the push to deploy safety-critical autonomous features. Unfortunately, traditional verification methods do not scale to the complexity of these systems and do not provide systematic methods to protect verified properties when not all the components can be verified. To address these challenges, this paper proposes a real-time mixed-trust computing framework that combines verification and protection. The framework introduces a new task model, where an application task can have both an untrusted and a trusted part. The untrusted part allows complex computations supported by a full OS with a realtime scheduler running in a VM hosted by a trusted hypervisor. The trusted part is executed by another scheduler within the hypervisor and is thus protected from the untrusted part. If the untrusted part fails to finish by a specific time, the trusted part is activated to preserve safety (e.g., prevent a crash) including its timing guarantees. This framework is the first allowing the use of untrusted components for CPS critical functions while preserving logical and timing guarantees, even in the presence of malicious attackers. We present the framework design and implementation along with the schedulability analysis and the coordination protocol between the trusted and untrusted parts. We also present our Raspberry Pi 3 implementation along with experiments showing the behavior of the system under failures of untrusted components, and a drone application to demonstrate its practicality.

Malvankar, A., Payne, J., Budhraja, K. K., Kundu, A., Chari, S., Mohania, M..  2019.  Malware Containment in Cloud. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :221—227.

Malware is pervasive and poses serious threats to normal operation of business processes in cloud. Cloud computing environments typically have hundreds of hosts that are connected to each other, often with high risk trust assumptions and/or protection mechanisms that are not difficult to break. Malware often exploits such weaknesses, as its immediate goal is often to spread itself to as many hosts as possible. Detecting this propagation is often difficult to address because the malware may reside in multiple components across the software or hardware stack. In this scenario, it is usually best to contain the malware to the smallest possible number of hosts, and it's also critical for system administration to resolve the issue in a timely manner. Furthermore, resolution often requires that several participants across different organizational teams scramble together to address the intrusion. In this vision paper, we define this problem in detail. We then present our vision of decentralized malware containment and the challenges and issues associated with this vision. The approach of containment involves detection and response using graph analytics coupled with a blockchain framework. We propose the use of a dominance frontier for profile nodes which must be involved in the containment process. Smart contracts are used to obtain consensus amongst the involved parties. The paper presents a basic implementation of this proposal. We have further discussed some open problems related to our vision.

2020-12-01
Apau, M. N., Sedek, M., Ahmad, R..  2019.  A Theoretical Review: Risk Mitigation Through Trusted Human Framework for Insider Threats. 2019 International Conference on Cybersecurity (ICoCSec). :37—42.

This paper discusses the possible effort to mitigate insider threats risk and aim to inspire organizations to consider identifying insider threats as one of the risks in the company's enterprise risk management activities. The paper suggests Trusted Human Framework (THF) as the on-going and cyclic process to detect and deter potential employees who bound to become the fraudster or perpetrator violating the access and trust given. The mitigation's control statements were derived from the recommended practices in the “Common Sense Guide to Mitigating Insider Threats” produced by the Software Engineering Institute, Carnegie Mellon University (SEI-CMU). The statements validated via a survey which was responded by fifty respondents who work in Malaysia.

Craggs, B., Rashid, A..  2019.  Trust Beyond Computation Alone: Human Aspects of Trust in Blockchain Technologies. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS). :21—30.

Blockchains - with their inherent properties of transaction transparency, distributed consensus, immutability and cryptographic verifiability - are increasingly seen as a means to underpin innovative products and services in a range of sectors from finance through to energy and healthcare. Discussions, too often, make assertions that the trustless nature of blockchain technologies enables and actively promotes their suitability - there being no need to trust third parties or centralised control. Yet humans need to be able to trust systems, and others with whom the system enables transactions. In this paper, we highlight that understanding this need for trust is critical for the development of blockchain-based systems. Through an online study with 125 users of the most well-known of blockchain based systems - the cryptocurrency Bitcoin - we uncover that human and institutional aspects of trust are pervasive. Our analysis highlights that, when designing future blockchain-based technologies, we ought to not only consider computational trust but also the wider eco-system, how trust plays a part in users engaging/disengaging with such eco-systems and where design choices impact upon trust. From this, we distill a set of guidelines for software engineers developing blockchain-based systems for societal applications.

Sun, P., Yin, S., Man, W., Tao, T..  2018.  Research of Personalized Recommendation Algorithm Based on Trust and User's Interest. 2018 International Conference on Robots Intelligent System (ICRIS). :153—156.

Most traditional recommendation algorithms only consider the binary relationship between users and projects, these can basically be converted into score prediction problems. But most of these algorithms ignore the users's interests, potential work factors or the other social factors of the recommending products. In this paper, based on the existing trustworthyness model and similarity measure, we puts forward the concept of trust similarity and design a joint interest-content recommendation framework to suggest users which videos to watch in the online video site. In this framework, we first analyze the user's viewing history records, tags and establish the user's interest characteristic vector. Then, based on the updated vector, users should be clustered by sparse subspace clust algorithm, which can improve the efficiency of the algorithm. We certainly improve the calculation of similarity to help users find better neighbors. Finally we conduct experiments using real traces from Tencent Weibo and Youku to verify our method and evaluate its performance. The results demonstrate the effectiveness of our approach and show that our approach can substantially improve the recommendation accuracy.

Herse, S., Vitale, J., Tonkin, M., Ebrahimian, D., Ojha, S., Johnston, B., Judge, W., Williams, M..  2018.  Do You Trust Me, Blindly? Factors Influencing Trust Towards a Robot Recommender System 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :7—14.

When robots and human users collaborate, trust is essential for user acceptance and engagement. In this paper, we investigated two factors thought to influence user trust towards a robot: preference elicitation (a combination of user involvement and explanation) and embodiment. We set our experiment in the application domain of a restaurant recommender system, assessing trust via user decision making and perceived source credibility. Previous research in this area uses simulated environments and recommender systems that present the user with the best choice from a pool of options. This experiment builds on past work in two ways: first, we strengthened the ecological validity of our experimental paradigm by incorporating perceived risk during decision making; and second, we used a system that recommends a nonoptimal choice to the user. While no effect of embodiment is found for trust, the inclusion of preference elicitation features significantly increases user trust towards the robot recommender system. These findings have implications for marketing and health promotion in relation to Human-Robot Interaction and call for further investigation into the development and maintenance of trust between robot and user.

2020-11-23
Li, W., Zhu, H., Zhou, X., Shimizu, S., Xin, M., Jin, Q..  2018.  A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :418–422.
The rapid development of the Internet and ecommerce has brought a lot of convenience to people's life. Personalized recommendation technology provides users with services that they may be interested according to users' information such as personal characteristics and historical behaviors. The research of personalized recommendation has been a hot point of data mining and social networks. In this paper, we focus on resolving the problem of data sparsity based on users' rating data and social network information, introduce a set of new measures for social trust and propose a novel personalized recommendation algorithm based on matrix factorization combining trust relevancy. Our experiments were performed on the Dianping datasets. The results show that our algorithm outperforms traditional approaches in terms of accuracy and stability.
Gao, Y., Li, X., Li, J., Gao, Y., Guo, N..  2018.  Graph Mining-based Trust Evaluation Mechanism with Multidimensional Features for Large-scale Heterogeneous Threat Intelligence. 2018 IEEE International Conference on Big Data (Big Data). :1272–1277.
More and more organizations and individuals start to pay attention to real-time threat intelligence to protect themselves from the complicated, organized, persistent and weaponized cyber attacks. However, most users worry about the trustworthiness of threat intelligence provided by TISPs (Threat Intelligence Sharing Platforms). The trust evaluation mechanism has become a hot topic in applications of TISPs. However, most current TISPs do not present any practical solution for trust evaluation of threat intelligence itself. In this paper, we propose a graph mining-based trust evaluation mechanism with multidimensional features for large-scale heterogeneous threat intelligence. This mechanism provides a feasible scheme and achieves the task of trust evaluation for TISP, through the integration of a trust-aware intelligence architecture model, a graph mining-based intelligence feature extraction method, and an automatic and interpretable trust evaluation algorithm. We implement this trust evaluation mechanism in a practical TISP (called GTTI), and evaluate the performance of our system on a real-world dataset from three popular cyber threat intelligence sharing platforms. Experimental results show that our mechanism can achieve 92.83% precision and 93.84% recall in trust evaluation. To the best of our knowledge, this work is the first to evaluate the trust level of heterogeneous threat intelligence automatically from the perspective of graph mining with multidimensional features including source, content, time, and feedback. Our work is beneficial to provide assistance on intelligence quality for the decision-making of human analysts, build a trust-aware threat intelligence sharing platform, and enhance the availability of heterogeneous threat intelligence to protect organizations against cyberspace attacks effectively.
Haddad, G. El, Aïmeur, E., Hage, H..  2018.  Understanding Trust, Privacy and Financial Fears in Online Payment. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :28–36.
In online payment, customers must transmit their personal and financial information through the website to conclude their purchase and pay the services or items selected. They may face possible fears from online transactions raised by their risk perception about financial or privacy loss. They may have concerns over the payment decision with the possible negative behaviors such as shopping cart abandonment. Therefore, customers have three major players that need to be addressed in online payment: the online seller, the payment page, and their own perception. However, few studies have explored these three players in an online purchasing environment. In this paper, we focus on the customer concerns and examine the antecedents of trust, payment security perception as well as their joint effect on two fundamentally important customers' aspects privacy concerns and financial fear perception. A total of 392 individuals participated in an online survey. The results highlight the importance, of the seller website's components (such as ease of use, security signs, and quality information) and their impact on the perceived payment security as well as their impact on customer's trust and financial fear perception. The objective of our study is to design a research model that explains the factors contributing to an online payment decision.
Sutton, A., Samavi, R., Doyle, T. E., Koff, D..  2018.  Digitized Trust in Human-in-the-Loop Health Research. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–10.
In this paper, we propose an architecture that utilizes blockchain technology for enabling verifiable trust in collaborative health research environments. The architecture supports the human-in-the-loop paradigm for health research by establishing trust between participants, including human researchers and AI systems, by making all data transformations transparent and verifiable by all participants. We define the trustworthiness of the system and provide an analysis of the architecture in terms of trust requirements. We then evaluate our architecture by analyzing its resiliency to common security threats and through an experimental realization.
Gwak, B., Cho, J., Lee, D., Son, H..  2018.  TARAS: Trust-Aware Role-Based Access Control System in Public Internet-of-Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :74–85.
Due to the proliferation of Internet-of-Things (IoT) environments, humans working with heterogeneous, smart objects in public IoT environments become more popular than ever before. This situation often requires to establish trust relationships between a user and a smart object for their secure interactions, but without the presence of prior interactions. In this work, we are interested in how a smart object can grant an access right to a human user in the absence of any prior knowledge in which some users may be malicious aiming to breach security goals of the IoT system. To solve this problem, we propose a trust-aware, role-based access control system, namely TARAS, which provides adaptive authorization to users based on dynamic trust estimation. In TARAS, for the initial trust establishment, we take a multidisciplinary approach by adopting the concept of I-sharing from psychology. The I-sharing follows the rationale that people with similar roles and traits are more likely to respond in a similar way. This theory provides a powerful tool to quickly establish trust between a smart object and a new user with no prior interactions. In addition, TARAS can adaptively filter malicious users out by revoking their access rights based on adaptive, dynamic trust estimation. Our experimental results show that the proposed TARAS mechanism can maximize system integrity in terms of correctly detecting malicious or benign users while maximizing service availability to users particularly when the system is fine-tuned based on the identified optimal setting in terms of an optimal trust threshold.
Tagliaferri, M., Aldini, A..  2018.  A Trust Logic for Pre-Trust Computations. 2018 21st International Conference on Information Fusion (FUSION). :2006–2012.
Computational trust is the digital counterpart of the human notion of trust as applied in social systems. Its main purpose is to improve the reliability of interactions in online communities and of knowledge transfer in information management systems. Trust models are formal frameworks in which the notion of computational trust is described rigorously and where its dynamics are explained precisely. In this paper we will consider and extend a computational trust model, i.e., JØsang's Subjective Logic: we will show how this model is well-suited to describe the dynamics of computational trust, but lacks effective tools to compute initial trust values to feed in the model. To overcome some of the issues with subjective logic, we will introduce a logical language which can be employed to describe and reason about trust. The core ideas behind the logical language will turn out to be useful in computing initial trust values to feed into subjective logic. The aim of the paper is, therefore, that of providing an improvement on subjective logic.