Biblio
Recently in the vast advancement of Artificial Intelligence, Machine learning and Deep Neural Network (DNN) driven us to the robust applications. Such as Image processing, speech recognition, and natural language processing, DNN Algorithms has succeeded in many drawbacks; especially the trained DNN models have made easy to the researchers to produces state-of-art results. However, sharing these trained models are always a challenging task, i.e. security, and protection. We performed extensive experiments to present some analysis of watermark in DNN. We proposed a DNN model for Digital watermarking which investigate the intellectual property of Deep Neural Network, Embedding watermarks, and owner verification. This model can generate the watermarks to deal with possible attacks (fine tuning and train to embed). This approach is tested on the standard dataset. Hence this model is robust to above counter-watermark attacks. Our model accurately and instantly verifies the ownership of all the remotely expanded deep learning models without affecting the model accuracy for standard information data.
This paper presents a scheme of intellectual property protection of hardware circuit based on digital compression coding technology. The aim is to solve the problem of high embedding cost and low resource utilization of IP watermarking. In this scheme, the watermark information is preprocessed by dynamic compression coding around the idle circuit of FPGA, and the free resources of the surrounding circuit are optimized that the IP watermark can get the best compression coding model while the extraction and detection of IP core watermark by activating the decoding function. The experimental results show that this method not only expands the capacity of watermark information, but also reduces the cost of watermark and improves the security and robustness of watermark algorithm.
Every day, huge amounts of unstructured text is getting generated. Most of this data is in the form of essays, research papers, patents, scholastic articles, book chapters etc. Many plagiarism softwares are being developed to be used in order to reduce the stealing and plagiarizing of Intellectual Property (IP). Current plagiarism softwares are mainly using string matching algorithms to detect copying of text from another source. The drawback of some of such plagiarism softwares is their inability to detect plagiarism when the structure of the sentence is changed. Replacement of keywords by their synonyms also fails to be detected by these softwares. This paper proposes a new method to detect such plagiarism using semantic knowledge graphs. The method uses Named Entity Recognition as well as semantic similarity between sentences to detect possible cases of plagiarism. The doubtful cases are visualized using semantic Knowledge Graphs for thorough analysis of authenticity. Rules for active and passive voice have also been considered in the proposed methodology.
Reconfigurable Scan Networks (RSNs) are a powerful tool for testing and maintenance of embedded systems, since they allow for flexible access to on-chip instrumentation such as built-in self-test and debug modules. RSNs, however, can be also exploited by malicious users as a side-channel in order to gain information about sensitive data or intellectual property and to recover secret keys. Hence, implementing appropriate counter-measures to secure the access to and data integrity of embedded instrumentation is of high importance. In this paper we present a novel hardware and software combined approach to ensure data privacy in IEEE Std 1687 (IJTAG) RSNs. To do so, both a secure IJTAG compliant plug-and-play instrument wrapper and a versatile software toolchain are introduced. The wrapper demonstrates the necessary architectural adaptations required when using a lightweight stream cipher, whereas the software toolchain provides a seamless integration of the testing workflow with stream cipher. The applicability of the method is demonstrated by an FPGA-based implementation. We report on the performance of the developed instrument wrapper, which is empirically shown to have only a small impact on the workflow in terms of hardware overhead, operational costs and test time overhead.
Digital fingerprinting refers to as method that can assign each copy of an intellectual property (IP) a distinct fingerprint. It was introduced for the purpose of protecting legal and honest IP users. The unique fingerprint can be used to identify the IP or a chip that contains the IP. However, existing fingerprinting techniques are not practical due to expensive cost of creating fingerprints and the lack of effective methods to verify the fingerprints. In the paper, we study a practical scan chain based fingerprinting method, where the digital fingerprint is generated by selecting the Q-SD or Q'-SD connection during the design of scan chains. This method has two major advantages. First, fingerprints are created as a post-silicon procedure and therefore there will be little fabrication overhead. Second, altering the Q-SD or Q'-SD connection style requires the modification of test vectors for each fingerprinted IP in order to maintain the fault coverage. This enables us to verify the fingerprint by inspecting the test vectors without opening up the chip to check the Q-SD or Q'-SD connection styles. We perform experiment on standard benchmarks to demonstrate that our approach has low design overhead. We also conduct security analysis to show that such fingerprints are robust against various attacks.
Semiconductor design houses are increasingly becoming dependent on third party vendors to procure intellectual property (IP) and meet time-to-market constraints. However, these third party IPs cannot be trusted as hardware Trojans can be maliciously inserted into them by untrusted vendors. While different approaches have been proposed to detect Trojans in third party IPs, their limitations have not been extensively studied. In this paper, we analyze the limitations of the state-of-the-art Trojan detection techniques and demonstrate with experimental results how to defeat these detection mechanisms. We then propose a Trojan detection framework based on information flow security (IFS) verification. Our framework detects violation of IFS policies caused by Trojans without the need of white-box knowledge of the IP. We experimentally validate the efficacy of our proposed technique by accurately identifying Trojans in the trust-hub benchmarks. We also demonstrate that our technique does not share the limitations of the previously proposed Trojan detection techniques.
Scan-based test is commonly used to increase testability and fault coverage, however, it is also known to be a liability for chip security. Research has shown that intellectual property (IP) or secret keys can be leaked through scan-based attacks. In this paper, we propose a dynamically-obfuscated scan design for protecting IPs against scan-based attacks. By perturbing all test patterns/responses and protecting the obfuscation key, the proposed architecture is proven to be robust against existing non-invasive scan attacks, and can protect all scan data from attackers in foundry, assembly, and system developers (i.e., OEMs) without compromising the testability. Furthermore, the proposed architecture can be easily plugged into EDA generated scan chains without having a noticeable impact on conventional integrated circuit (IC) design, manufacturing, and test flow. Finally, detailed security and experimental analyses have been performed on several benchmarks. The results demonstrate that the proposed method can protect chips from existing brute force, differential, and other scan-based attacks that target the obfuscation key. The proposed design is of low overhead on area, power consumption, and pattern generation time, and there is no impact on test time.
Intellectual property is inextricably linked to the innovative development of mass innovation spaces. The synthetic development of intellectual property and mass innovation spaces will fundamentally support the new economic model of “mass entrepreneurship and innovation”. As such, it is critical to explore intellectual property service standards for mass innovation spaces and to steer mass innovation spaces to the creation of an intellectual property service system catering to “makers”. In addition, it is crucial to explore intellectual cluster management innovations for mass innovation spaces.
For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.
Recent hardware advances, called gate camouflaging, have opened the possibility of protecting integrated circuits against reverse-engineering attacks. In this paper, we investigate the possibility of provably boosting the capability of physical camouflaging of a single Boolean gate into physical camouflaging of a larger Boolean circuit. We first propose rigorous definitions, borrowing approaches from modern cryptography and program obfuscation areas, for circuit camouflage. Informally speaking, gate camouflaging is defined as a transformation of a physical gate that appears to mask the gate to an attacker evaluating the circuit containing this gate. Under this assumption, we formally prove two results: a limitation and a construction. Our limitation result says that there are circuits for which, no matter how many gates we camouflaged, an adversary capable of evaluating the circuit will correctly guess all the camouflaged gates. Our construction result says that if pseudo-random functions exist (a common assumptions in cryptography), a small number of camouflaged gates suffices to: (a) leak no additional information about the camouflaged gates to an adversary evaluating the pseudo-random function circuit; and (b) turn these functions into random oracles. These latter results are the first results on circuit camouflaging provable in a cryptographic model (previously, construction were given under no formal model, and were eventually reverse-engineered, or were argued secure under specific classes of attacks). Our results imply a concrete and provable realization of random oracles, which, even if under a hardware-based assumption, is applicable in many scenarios, including public-key infrastructures. Finding special conditions under which provable realizations of random oracles has been an open problem for many years, since a software only provable implementation of random oracles was proved to be (almost certainly) impossible.
Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.
Existing access control mechanisms are based on the concept of identity enrolment and recognition and assume that recognized identity is a synonym to ethical actions, yet statistics over the years show that the most severe security breaches are the results of trusted, identified, and legitimate users who turned into malicious insiders. Insider threat damages vary from intellectual property loss and fraud to information technology sabotage. As insider threat incidents evolve, there exist demands for a nonidentity-based authentication measure that rejects access to authorized individuals who have mal-intents of access. In this paper, we study the possibility of using the user's intention as an access control measure using the involuntary electroencephalogram reactions toward visual stimuli. We propose intent-based access control (IBAC) that detects the intentions of access based on the existence of knowledge about an intention. IBAC takes advantage of the robustness of the concealed information test to assess access risk. We use the intent and intent motivation level to compute the access risk. Based on the calculated risk and risk accepted threshold, the system makes the decision whether to grant or deny access requests. We assessed the model using experiments on 30 participants that proved the robustness of the proposed solution.
Free-text keystroke authentication has been demonstrated to be a promising behavioral biometric. But unlike physiological traits such as fingerprints, in free-text keystroke authentication, there is no natural way to identify what makes a sample. It remains an open problem as to how much keystroke data are necessary for achieving acceptable authentication performance. Using public datasets and two existing algorithms, we conduct two experiments to investigate the effect of the reference profile size and test sample size on False Alarm Rate (FAR) and Imposter Pass Rate (IPR). We find that (1) larger reference profiles will drive down both IPR and FAR values, provided that the test samples are large enough, and (2) larger test samples have no obvious effect on IPR, regardless of the reference profile size. We discuss the practical implication of our findings.
Integrated circuits (ICs) are now designed and fabricated in a globalized multivendor environment making them vulnerable to malicious design changes, the insertion of hardware Trojans/malware, and intellectual property (IP) theft. Algorithmic reverse engineering of digital circuits can mitigate these concerns by enabling analysts to detect malicious hardware, verify the integrity of ICs, and detect IP violations. In this paper, we present a set of algorithms for the reverse engineering of digital circuits starting from an unstructured netlist and resulting in a high-level netlist with components such as register files, counters, adders, and subtractors. Our techniques require no manual intervention and experiments show that they determine the functionality of >45% and up to 93% of the gates in each of the test circuits that we examine. We also demonstrate that our algorithms are scalable to real designs by experimenting with a very large, highly-optimized system-on-chip (SOC) design with over 375000 combinational elements. Our inference algorithms cover 68% of the gates in this SOC. We also demonstrate that our algorithms are effective in aiding a human analyst to detect hardware Trojans in an unstructured netlist.
- « first
- ‹ previous
- 1
- 2
- 3