Nandi, S., Phadikar, S., Majumder, K..
2020.
Detection of DDoS Attack and Classification Using a Hybrid Approach. 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP). :41—47.
In the area of cloud security, detection of DDoS attack is a challenging task such that legitimate users use the cloud resources properly. So in this paper, detection and classification of the attacking packets and normal packets are done by using various machine learning classifiers. We have selected the most relevant features from NSL KDD dataset using five (Information gain, gain ratio, chi-squared, ReliefF, and symmetrical uncertainty) commonly used feature selection methods. Now from the entire selected feature set, the most important features are selected by applying our hybrid feature selection method. Since all the anomalous instances of the dataset do not belong to DDoS category so we have separated only the DDoS packets from the dataset using the selected features. Finally, the dataset has been prepared and named as KDD DDoS dataset by considering the selected DDoS packets and normal packets. This KDD DDoS dataset has been discretized using discretize tool in weka for getting better performance. Finally, this discretize dataset has been applied on some commonly used (Naive Bayes, Bayes Net, Decision Table, J48 and Random Forest) classifiers for determining the detection rate of the classifiers. 10 fold cross validation has been used here for measuring the robustness of the system. To measure the efficiency of our hybrid feature selection method, we have also applied the same set of classifiers on the NSL KDD dataset, where it gives the best anomaly detection rate of 99.72% and average detection rate 98.47% similarly, we have applied the same set of classifiers on NSL DDoS dataset and obtain the average DDoS detection of 99.01% and the best DDoS detection rate of 99.86%. In order to compare the performance of our proposed hybrid method, we have also applied the existing feature selection methods and measured the detection rate using the same set of classifiers. Finally, we have seen that our hybrid approach for detecting the DDoS attack gives the best detection rate compared to some existing methods.
Sumantra, I., Gandhi, S. Indira.
2020.
DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
Abdulkarem, H. S., Dawod, A..
2020.
DDoS Attack Detection and Mitigation at SDN Data Plane Layer. 2020 2nd Global Power, Energy and Communication Conference (GPECOM). :322—326.
In the coming future, Software-defined networking (SDN) will become a technology more responsive, fully automated, and highly secure. SDN is a way to manage networks by separate the control plane from the forwarding plane, by using software to manage network functions through a centralized control point. A distributed denial-of-service (DDoS) attack is the most popular malicious attempt to disrupt normal traffic of a targeted server, service, or network. The problem of the paper is the DDoS attack inside the SDN environment and how could use SDN specifications through the advantage of Open vSwitch programmability feature to stop the attack. This paper presents DDoS attack detection and mitigation in the SDN data-plane by applying a written SDN application in python language, based on the malicious traffic abnormal behavior to reduce the interference with normal traffic. The evaluation results reveal detection and mitigation time between 100 to 150 sec. The work also sheds light on the programming relevance with the open daylight controller over an abstracted view of the network infrastructure.
Wang, Y., Kjerstad, E., Belisario, B..
2020.
A Dynamic Analysis Security Testing Infrastructure for Internet of Things. 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1—6.
IoT devices such as Google Home and Amazon Echo provide great convenience to our lives. Many of these IoT devices collect data including Personal Identifiable Information such as names, phone numbers, and addresses and thus IoT security is important. However, conducting security analysis on IoT devices is challenging due to the variety, the volume of the devices, and the special skills required for hardware and software analysis. In this research, we create and demonstrate a dynamic analysis security testing infrastructure for capturing network traffic from IoT devices. The network traffic is automatically mirrored to a server for live traffic monitoring and offline data analysis. Using the dynamic analysis security testing infrastructure, we conduct extensive security analysis on network traffic from Google Home and Amazon Echo. Our testing results indicate that Google Home enforces tighter security controls than Amazon Echo while both Google and Amazon devices provide the desired security level to protect user data in general. The dynamic analysis security testing infrastructure presented in the paper can be utilized to conduct similar security analysis on any IoT devices.
Zhai, P., Song, Y., Zhu, X., Cao, L., Zhang, J., Yang, C..
2020.
Distributed Denial of Service Defense in Software Defined Network Using OpenFlow. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1274—1279.
Software Defined Network (SDN) is a new type of network architecture solution, and its innovation lies in decoupling traditional network system into a control plane, a data plane, and an application plane. It logically implements centralized control and management of the network, and SDN is considered to represent the development trend of the network in the future. However, SDN still faces many security challenges. Currently, the number of insecure devices is huge. Distributed Denial of Service (DDoS) attacks are one of the major network security threats.This paper focuses on the detection and mitigation of DDoS attacks in SDN. Firstly, we explore a solution to detect DDoS using Renyi entropy, and we use exponentially weighted moving average algorithm to set a dynamic threshold to adapt to changes of the network. Second, to mitigate this threat, we analyze the historical behavior of each source IP address and score it to determine the malicious source IP address, and use OpenFlow protocol to block attack source.The experimental results show that the scheme studied in this paper can effectively detect and mitigate DDoS attacks.
Navabi, S., Nayyar, A..
2020.
A Dynamic Mechanism for Security Management in Multi-Agent Networked Systems. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1628—1637.
We study the problem of designing a dynamic mechanism for security management in an interconnected multi-agent system with N strategic agents and one coordinator. The system is modeled as a network of N vertices. Each agent resides in one of the vertices of the network and has a privately known security state that describes its safety level at each time. The evolution of an agent's security state depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. Each agent's utility at time instant t depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. The objective of the network coordinator is to take security actions in order to maximize the long-term expected social surplus. Since agents are strategic and their security states are private information, the coordinator needs to incentivize agents to reveal their information. This results in a dynamic mechanism design problem for the coordinator. We leverage the inter-temporal correlations between the agents' security states to identify sufficient conditions under which an incentive compatible expected social surplus maximizing mechanism can be constructed. We then identify two special cases of our formulation and describe how the desired mechanism is constructed in these cases.