Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2021-02-16
Nandi, S., Phadikar, S., Majumder, K..  2020.  Detection of DDoS Attack and Classification Using a Hybrid Approach. 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP). :41—47.
In the area of cloud security, detection of DDoS attack is a challenging task such that legitimate users use the cloud resources properly. So in this paper, detection and classification of the attacking packets and normal packets are done by using various machine learning classifiers. We have selected the most relevant features from NSL KDD dataset using five (Information gain, gain ratio, chi-squared, ReliefF, and symmetrical uncertainty) commonly used feature selection methods. Now from the entire selected feature set, the most important features are selected by applying our hybrid feature selection method. Since all the anomalous instances of the dataset do not belong to DDoS category so we have separated only the DDoS packets from the dataset using the selected features. Finally, the dataset has been prepared and named as KDD DDoS dataset by considering the selected DDoS packets and normal packets. This KDD DDoS dataset has been discretized using discretize tool in weka for getting better performance. Finally, this discretize dataset has been applied on some commonly used (Naive Bayes, Bayes Net, Decision Table, J48 and Random Forest) classifiers for determining the detection rate of the classifiers. 10 fold cross validation has been used here for measuring the robustness of the system. To measure the efficiency of our hybrid feature selection method, we have also applied the same set of classifiers on the NSL KDD dataset, where it gives the best anomaly detection rate of 99.72% and average detection rate 98.47% similarly, we have applied the same set of classifiers on NSL DDoS dataset and obtain the average DDoS detection of 99.01% and the best DDoS detection rate of 99.86%. In order to compare the performance of our proposed hybrid method, we have also applied the existing feature selection methods and measured the detection rate using the same set of classifiers. Finally, we have seen that our hybrid approach for detecting the DDoS attack gives the best detection rate compared to some existing methods.
Sumantra, I., Gandhi, S. Indira.  2020.  DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
Abdulkarem, H. S., Dawod, A..  2020.  DDoS Attack Detection and Mitigation at SDN Data Plane Layer. 2020 2nd Global Power, Energy and Communication Conference (GPECOM). :322—326.
In the coming future, Software-defined networking (SDN) will become a technology more responsive, fully automated, and highly secure. SDN is a way to manage networks by separate the control plane from the forwarding plane, by using software to manage network functions through a centralized control point. A distributed denial-of-service (DDoS) attack is the most popular malicious attempt to disrupt normal traffic of a targeted server, service, or network. The problem of the paper is the DDoS attack inside the SDN environment and how could use SDN specifications through the advantage of Open vSwitch programmability feature to stop the attack. This paper presents DDoS attack detection and mitigation in the SDN data-plane by applying a written SDN application in python language, based on the malicious traffic abnormal behavior to reduce the interference with normal traffic. The evaluation results reveal detection and mitigation time between 100 to 150 sec. The work also sheds light on the programming relevance with the open daylight controller over an abstracted view of the network infrastructure.
Wang, Y., Kjerstad, E., Belisario, B..  2020.  A Dynamic Analysis Security Testing Infrastructure for Internet of Things. 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1—6.
IoT devices such as Google Home and Amazon Echo provide great convenience to our lives. Many of these IoT devices collect data including Personal Identifiable Information such as names, phone numbers, and addresses and thus IoT security is important. However, conducting security analysis on IoT devices is challenging due to the variety, the volume of the devices, and the special skills required for hardware and software analysis. In this research, we create and demonstrate a dynamic analysis security testing infrastructure for capturing network traffic from IoT devices. The network traffic is automatically mirrored to a server for live traffic monitoring and offline data analysis. Using the dynamic analysis security testing infrastructure, we conduct extensive security analysis on network traffic from Google Home and Amazon Echo. Our testing results indicate that Google Home enforces tighter security controls than Amazon Echo while both Google and Amazon devices provide the desired security level to protect user data in general. The dynamic analysis security testing infrastructure presented in the paper can be utilized to conduct similar security analysis on any IoT devices.
Zhai, P., Song, Y., Zhu, X., Cao, L., Zhang, J., Yang, C..  2020.  Distributed Denial of Service Defense in Software Defined Network Using OpenFlow. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1274—1279.
Software Defined Network (SDN) is a new type of network architecture solution, and its innovation lies in decoupling traditional network system into a control plane, a data plane, and an application plane. It logically implements centralized control and management of the network, and SDN is considered to represent the development trend of the network in the future. However, SDN still faces many security challenges. Currently, the number of insecure devices is huge. Distributed Denial of Service (DDoS) attacks are one of the major network security threats.This paper focuses on the detection and mitigation of DDoS attacks in SDN. Firstly, we explore a solution to detect DDoS using Renyi entropy, and we use exponentially weighted moving average algorithm to set a dynamic threshold to adapt to changes of the network. Second, to mitigate this threat, we analyze the historical behavior of each source IP address and score it to determine the malicious source IP address, and use OpenFlow protocol to block attack source.The experimental results show that the scheme studied in this paper can effectively detect and mitigate DDoS attacks.
Navabi, S., Nayyar, A..  2020.  A Dynamic Mechanism for Security Management in Multi-Agent Networked Systems. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1628—1637.
We study the problem of designing a dynamic mechanism for security management in an interconnected multi-agent system with N strategic agents and one coordinator. The system is modeled as a network of N vertices. Each agent resides in one of the vertices of the network and has a privately known security state that describes its safety level at each time. The evolution of an agent's security state depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. Each agent's utility at time instant t depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. The objective of the network coordinator is to take security actions in order to maximize the long-term expected social surplus. Since agents are strategic and their security states are private information, the coordinator needs to incentivize agents to reveal their information. This results in a dynamic mechanism design problem for the coordinator. We leverage the inter-temporal correlations between the agents' security states to identify sufficient conditions under which an incentive compatible expected social surplus maximizing mechanism can be constructed. We then identify two special cases of our formulation and describe how the desired mechanism is constructed in these cases.
2021-02-15
Reshma, S., Shaila, K., Venugopal, K. R..  2020.  DEAVD - Data Encryption and Aggregation using Voronoi Diagram for Wireless Sensor Networks. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :635–638.
Wireless Sensor Networks (WSNs) are applied in environmental monitoring, military surveillance, etc., whereas these applications focuses on providing security for sensed data and the nodes are available for a long time. Hence, we propose DEAVD protocol for secure data exchange with limited usage of energy. The DEAVD protocol compresses data to reduces the energy consumption and implements an energy efficient encryption and decryption technique using voronoi diagram paradigm. Thus, there is an improvement in the proposed protocol with respect to security due to the concept adapted during data encryption and aggregation.
Myasnikova, N., Beresten, M. P., Myasnikova, M. G..  2020.  Development of Decomposition Methods for Empirical Modes Based on Extremal Filtration. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). :1–4.
The method of extremal filtration implementing the decomposition of signals into alternating components is considered. The history of the method development is described, its mathematical substantiation is given. The method suggests signal decomposition based on the removal of known components locally determined by their extrema. The similarity of the method with empirical modes decomposition in terms of the result is shown, and their comparison is also carried out. The algorithm of extremal filtration has a simple mathematical basis that does not require the calculation of transcendental functions, which provides it with higher performance with comparable results. The advantages and disadvantages of the extremal filtration method are analyzed, and the possibility of its application for solving various technical problems is shown, i.e. the formation of diagnostic features, rapid analysis of signals, spectral and time-frequency analysis, etc. The methods for calculating spectral characteristics are described: by the parameters of the distinguished components, based on the approximation on the extrema by bell-shaped pulses. The method distribution in case of wavelet transform of signals is described. The method allows obtaining rapid evaluation of the frequencies and amplitudes (powers) of the components, which can be used as diagnostic features in solving problems of recognition, diagnosis and monitoring. The possibility of using extremal filtration in real-time systems is shown.
2021-02-10
Banerjee, R., Baksi, A., Singh, N., Bishnu, S. K..  2020.  Detection of XSS in web applications using Machine Learning Classifiers. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
Considering the amount of time we spend on the internet, web pages have evolved over a period of time with rapid progression and momentum. With such advancement, we find ourselves fronting a few hostile ideologies, breaching the security levels of webpages as such. The most hazardous of them all is XSS, known as Cross-Site Scripting, is one of the attacks which frequently occur in website-based applications. Cross-Site Scripting (XSS) attacks happen when malicious data enters a web application through an untrusted source. The spam attacks happen in the form of Wall posts, News feed, Message spam and mostly when a user is open to download content of webpages. This paper investigates the use of machine learning to build classifiers to allow the detection of XSS. Establishing our approach, we target the detection modus operandi of XSS attack via two features: URLs and JavaScript. To predict the level of XSS threat, we will be using four machine learning algorithms (SVM, KNN, Random forest and Logistic Regression). Proposing these classified algorithms, webpages will be branded as malicious or benign. After assessing and calculating the dataset features, we concluded that the Random Forest Classifier performed most accurately with the lowest False Positive Rate of 0.34. This precision will ensure a method much efficient to evaluate threatening XSS for the smooth functioning of the system.
Kascheev, S., Olenchikova, T..  2020.  The Detecting Cross-Site Scripting (XSS) Using Machine Learning Methods. 2020 Global Smart Industry Conference (GloSIC). :265—270.
This article discusses the problem of detecting cross-site scripting (XSS) using machine learning methods. XSS is an attack in which malicious code is embedded on a page to interact with an attacker’s web server. The XSS attack ranks third in the ranking of key web application risks according to Open Source Foundation for Application Security (OWASP). This attack has not been studied for a long time. It was considered harmless. However, this is fallacious: the page or HTTP Cookie may contain very vulnerable data, such as payment document numbers or the administrator session token. Machine learning is a tool that can be used to detect XSS attacks. This article describes an experiment. As a result the model for detecting XSS attacks was created. Following machine learning algorithms are considered: the support vector method, the decision tree, the Naive Bayes classifier, and Logistic Regression. The accuracy of the presented methods is made a comparison.
Purohit, S., Calyam, P., Wang, S., Yempalla, R., Varghese, J..  2020.  DefenseChain: Consortium Blockchain for Cyber Threat Intelligence Sharing and Defense. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :112—119.
Cloud-hosted applications are prone to targeted attacks such as DDoS, advanced persistent threats, cryptojacking which threaten service availability. Recently, methods for threat information sharing and defense require co-operation and trust between multiple domains/entities. There is a need for mechanisms that establish distributed trust to allow for such a collective defense. In this paper, we present a novel threat intelligence sharing and defense system, namely “DefenseChain”, to allow organizations to have incentive-based and trustworthy co-operation to mitigate the impact of cyber attacks. Our solution approach features a consortium Blockchain platform to obtain threat data and select suitable peers to help with attack detection and mitigation. We propose an economic model for creation and sustenance of the consortium with peers through a reputation estimation scheme that uses `Quality of Detection' and `Quality of Mitigation' metrics. Our evaluation experiments with DefenseChain implementation are performed on an Open Cloud testbed with Hyperledger Composer and in a simulation environment. Our results show that the DefenseChain system overall performs better than state-of-the-art decision making schemes in choosing the most appropriate detector and mitigator peers. In addition, we show that our DefenseChain achieves better performance trade-offs in terms of metrics such as detection time, mitigation time and attack reoccurence rate. Lastly, our validation results demonstrate that our DefenseChain can effectively identify rational/irrational service providers.
Shang, F., Li, X., Zhai, D., Lu, Y., Zhang, D., Qian, Y..  2020.  On the Distributed Jamming System of Covert Timing Channels in 5G Networks. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1107—1111.
To build the fifth generation (5G) mobile network, the sharing structure in the 5G network adopted in industries has gained great research interesting. However, in this structure data are shared among diversity networks, which introduces the threaten of network security, such as covert timing channels. To eliminate the covert timing channel, we propose to inject noise into the covert timing channel. By analyzing the modulation method of covert timing channels, we design the jamming strategy on the covert channel. According to the strategy, the interference algorithm of the covert timing channel is designed. Since the interference algorithm depends heavily on the memory, we construct a distributing jammer. Experiments results show that these covert time channel can be blocked under the distributing jammer.
2021-02-08
Arunpandian, S., Dhenakaran, S. S..  2020.  DNA based Computing Encryption Scheme Blending Color and Gray Images. 2020 International Conference on Communication and Signal Processing (ICCSP). :0966–0970.

In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.

Pradeeksha, A. Shirley, Sathyapriya, S. Sridevi.  2020.  Design and Implementation of DNA Based Cryptographic Algorithm. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). :299–302.
The intensity of DNA figuring will reinforce the current security on frameworks by opening up another probability of a half and half cryptographic framework. Here, we are exhibiting the DNA S-box for actualizing cryptographic algorithm. The DNA based S-Box is designed using vivado software and implemented using Artix-7 device. The main aim is to design the DNA based S-box to increase the security. Also pipelining and parallelism techniques are to be implement in future to increase the speed.
Pandey, A., Mahajan, D., Gupta, S., Rastogi, i.  2020.  Detection of Blind Signature Using Recursive Sum. 2020 6th International Conference on Signal Processing and Communication (ICSC). :262–265.
Digital signatures are suitable technology for public key encryption. Acceptance (non-repudiation) of digital messages and data origin authentication are one of the main usage of digital signature. Digital signature's security mainly depends on the keys (public and private). These keys are used to generate and validate digital signatures. In digital signature signing process is performed using signer's secret key. However, any attacker can present a blinded version of message encrypted with signer's public key and can get the original message. Therefore, this paper proposed a novel method to identify blinded version of digital signature. The proposed method has been tested mathematically and found to be more efficient to detect blind signatures.
Van, L. X., Dung, L. H., Hoa, D. V..  2020.  Developing Root Problem Aims to Create a Secure Digital Signature Scheme in Data Transfer. 2020 International Conference on Green and Human Information Technology (ICGHIT). :25–30.
This paper presents the proposed method of building a digital signature algorithm which is based on the difficulty of solving root problem and some expanded root problems on Zp. The expanded root problem is a new form of difficult problem without the solution, also originally proposed and applied to build digital signature algorithms. This proposed method enable to build a high-security digital signature platform for practical applications.
Zhang, J..  2020.  DeepMal: A CNN-LSTM Model for Malware Detection Based on Dynamic Semantic Behaviours. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :313–316.
Malware refers to any software accessing or being installed in a system without the authorisation of administrators. Various malware has been widely used for cyber-criminals to accomplish their evil intentions and goals. To combat the increasing amount and reduce the threat of malicious programs, a novel deep learning framework, which uses NLP techniques for reference, combines CNN and LSTM neurones to capture the locally spatial correlations and learn from sequential longterm dependency is proposed. Hence, high-level abstractions and representations are automatically extracted for the malware classification task. The classification accuracy improves from 0.81 (best one by Random Forest) to approximately 1.0.
2021-02-03
Sabu, R., Yasuda, K., Kato, R., Kawaguchi, S., Iwata, H..  2020.  Does visual search by neck motion improve hemispatial neglect?: An experimental study using an immersive virtual reality system 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :262—267.

Unilateral spatial neglect (USN) is a higher cognitive dysfunction that can occur after a stroke. It is defined as an impairment in finding, reporting, reacting to, and directing stimuli opposite the damaged side of the brain. We have proposed a system to identify neglected regions in USN patients in three dimensions using three-dimensional virtual reality. The objectives of this study are twofold: first, to propose a system for numerically identifying the neglected regions using an object detection task in a virtual space, and second, to compare the neglected regions during object detection when the patient's neck is immobilized (‘fixed-neck’ condition) versus when the neck can be freely moved to search (‘free-neck’ condition). We performed the test using an immersive virtual reality system, once with the patient's neck fixed and once with the patient's neck free to move. Comparing the results of the study in two patients, we found that the neglected areas were similar in the fixed-neck condition. However, in the free-neck condition, one patient's neglect improved while the other patient’s neglect worsened. These results suggest that exploratory ability affects the symptoms of USN and is crucial for clinical evaluation of USN patients.

Martin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., Castro, M..  2020.  Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE). :1—6.

This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.

Gillen, R. E., Anderson, L. A., Craig, C., Johnson, J., Columbia, A., Anderson, R., Craig, A., Scott, S. L..  2020.  Design and Implementation of Full-Scale Industrial Control System Test Bed for Assessing Cyber-Security Defenses. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :341—346.
In response to the increasing awareness of the Ethernet-based threat surface of industrial control systems (ICS), both the research and commercial communities are responding with ICS-specific security solutions. Unfortunately, many of the properties of ICS environments that contribute to the extent of this threat surface (e.g. age of devices, inability or unwillingness to patch, criticality of the system) similarly prevent the proper testing and evaluation of these security solutions. Production environments are often too fragile to introduce unvetted technology and most organizations lack test environments that are sufficiently consistent with production to yield actionable results. Cost and space requirements prevent the creation of mirrored physical environments leading many to look towards simulation or virtualization. Examples in literature provide various approaches to building ICS test beds, though most of these suffer from a lack of realism due to contrived scenarios, synthetic data and other compromises. In this paper, we provide a design methodology for building highly realistic ICS test beds for validating cybersecurity defenses. We then apply that methodology to the design and building of a specific test bed and describe the results and experimental use cases.
Chernov, D., Sychugov, A..  2020.  Determining the Hazard Quotient of Destructive Actions of Automated Process Control Systems Information Security Violator. 2020 International Russian Automation Conference (RusAutoCon). :566—570.
The purpose of the work is a formalized description of the method determining numerical expression of the danger from actions potentially implemented by an information security violator. The implementation of such actions may lead to a disruption of the ordered functioning of multilevel distributed automated process control systems, which indicates the importance of developing new adequate solutions for predicting attacks consequences. The analysis of the largest destructive effects on information security systems of critical objects is carried out. The most common methods of obtaining the value of the hazard quotient of information security violators' destructive actions are considered. Based on the known methods for determining the possible damage from attacks implemented by a potential information security violator, a new, previously undetected in open sources method for determining the hazard quotient of destructive actions of an information security violator has been proposed. In order to carry out experimental calculations by the proposed method, the authors developed the required software. The calculations results are presented and indicate the possibility of using the proposed method for modeling threats and information security violators when designing an information security system for automated process control systems.
2021-02-01
Rathi, P., Adarsh, P., Kumar, M..  2020.  Deep Learning Approach for Arbitrary Image Style Fusion and Transformation using SANET model. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :1049–1057.
For real-time applications of arbitrary style transformation, there is a trade-off between the quality of results and the running time of existing algorithms. Hence, it is required to maintain the equilibrium of the quality of generated artwork with the speed of execution. It's complicated for the present arbitrary style-transformation procedures to preserve the structure of content-image while blending with the design and pattern of style-image. This paper presents the implementation of a network using SANET models for generating impressive artworks. It is flexible in the fusion of new style characteristics while sustaining the semantic-structure of the content-image. The identity-loss function helps to minimize the overall loss and conserves the spatial-arrangement of content. The results demonstrate that this method is practically efficient, and therefore it can be employed for real-time fusion and transformation using arbitrary styles.
Sendhil, R., Amuthan, A..  2020.  A Descriptive Study on Homomorphic Encryption Schemes for Enhancing Security in Fog Computing. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :738–743.
Nowadays, Fog Computing gets more attention due to its characteristics. Fog computing provides more advantages in related to apply with the latest technology. On the other hand, there is an issue about the data security over processing of data. Fog Computing encounters many security challenges like false data injection, violating privacy in edge devices and integrity of data, etc. An encryption scheme called Homomorphic Encryption (HME) technique is used to protect the data from the various security threats. This homomorphic encryption scheme allows doing manipulation over the encrypted data without decrypting it. This scheme can be implemented in many systems with various crypto-algorithms. This homomorphic encryption technique is mainly used to retain the privacy and to process the stored encrypted data on a remote server. This paper addresses the terminologies of Fog Computing, work flow and properties of the homomorphic encryption algorithm, followed by exploring the application of homomorphic encryption in various public key cryptosystems such as RSA and Pailier. It focuses on various homomorphic encryption schemes implemented by various researchers such as Brakerski-Gentry-Vaikuntanathan model, Improved Homomorphic Cryptosystem, Upgraded ElGamal based Algebric homomorphic encryption scheme, In-Direct rapid homomorphic encryption scheme which provides integrity of data.
2021-01-28
Lin, G., Zhao, H., Zhao, L., Gan, X., Yao, Z..  2020.  Differential Privacy Information Publishing Algorithm based on Cluster Anonymity. 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :226—233.

With the development of Internet technology, the attacker gets more and more complex background knowledge, which makes the anonymous model susceptible to background attack. Although the differential privacy model can resist the background attack, it reduces the versatility of the data. In this paper, this paper proposes a differential privacy information publishing algorithm based on clustering anonymity. The algorithm uses the cluster anonymous algorithm based on KD tree to cluster the original data sets and gets anonymous tables by anonymous operation. Finally, the algorithm adds noise to the anonymous table to satisfy the definition of differential privacy. The algorithm is compared with the DCMDP (Density-Based Clustering Mechanism with Differential Privacy, DCMDP) algorithm under different privacy budgets. The experiments show that as the privacy budget increases, the algorithm reduces the information loss by about 80% of the published data.

Santos, W., Sousa, G., Prata, P., Ferrão, M. E..  2020.  Data Anonymization: K-anonymity Sensitivity Analysis. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.

These days the digitization process is everywhere, spreading also across central governments and local authorities. It is hoped that, using open government data for scientific research purposes, the public good and social justice might be enhanced. Taking into account the European General Data Protection Regulation recently adopted, the big challenge in Portugal and other European countries, is how to provide the right balance between personal data privacy and data value for research. This work presents a sensitivity study of data anonymization procedure applied to a real open government data available from the Brazilian higher education evaluation system. The ARX k-anonymization algorithm, with and without generalization of some research value variables, was performed. The analysis of the amount of data / information lost and the risk of re-identification suggest that the anonymization process may lead to the under-representation of minorities and sociodemographic disadvantaged groups. It will enable scientists to improve the balance among risk, data usability, and contributions for the public good policies and practices.