Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2023-01-05
Kayouh, Nabil, Dkhissi, Btissam.  2022.  A decision support system for evaluating the logistical risks in Supply chains based on RPN factors and multi criteria decision making approach. 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA). :1—6.
Logistics risk assessment in the supply chain is considered as one of the important topics that has attracted the attention of researchers in recent years; Companies that struggle to manage their logistical risks by not putting in place resilient strategies to mitigate them, may suffer from significant financial losses; The automotive industry is a vital sector for the Moroccan economy, the year 2020, the added-value of the automotive industry in Morocco is higher than that of the fertilizer (Fathi, n.d.) [1], This sector is considered the first exporter of the country. Our study will focuses on the assessment of the pure logistical risks in the moroccan automotive industry. Our main objective for this study is to assess the logistical risks which will allow us to put in place proactive and predictive resilient strategies for their mitigation.
C, Chethana, Pareek, Piyush Kumar, Costa de Albuquerque, Victor Hugo, Khanna, Ashish, Gupta, Deepak.  2022.  Deep Learning Technique Based Intrusion Detection in Cyber-Security Networks. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–7.
As a result of the inherent weaknesses of the wireless medium, ad hoc networks are susceptible to a broad variety of threats and assaults. As a direct consequence of this, intrusion detection, as well as security, privacy, and authentication in ad-hoc networks, have developed into a primary focus of current study. This body of research aims to identify the dangers posed by a variety of assaults that are often seen in wireless ad-hoc networks and provide strategies to counteract those dangers. The Black hole assault, Wormhole attack, Selective Forwarding attack, Sybil attack, and Denial-of-Service attack are the specific topics covered in this thesis. In this paper, we describe a trust-based safe routing protocol with the goal of mitigating the interference of black hole nodes in the course of routing in mobile ad-hoc networks. The overall performance of the network is negatively impacted when there are black hole nodes in the route that routing takes. As a result, we have developed a routing protocol that reduces the likelihood that packets would be lost as a result of black hole nodes. This routing system has been subjected to experimental testing in order to guarantee that the most secure path will be selected for the delivery of packets between a source and a destination. The invasion of wormholes into a wireless network results in the segmentation of the network as well as a disorder in the routing. As a result, we provide an effective approach for locating wormholes by using ordinal multi-dimensional scaling and round trip duration in wireless ad hoc networks with either sparse or dense topologies. Wormholes that are linked by both short route and long path wormhole linkages may be found using the approach that was given. In order to guarantee that this ad hoc network does not include any wormholes that go unnoticed, this method is subjected to experimental testing. In order to fight against selective forwarding attacks in wireless ad-hoc networks, we have developed three different techniques. The first method is an incentive-based algorithm that makes use of a reward-punishment system to drive cooperation among three nodes for the purpose of vi forwarding messages in crowded ad-hoc networks. A unique adversarial model has been developed by our team, and inside it, three distinct types of nodes and the activities they participate in are specified. We have shown that the suggested strategy that is based on incentives prohibits nodes from adopting an individualistic behaviour, which ensures collaboration in the process of packet forwarding. To guarantee that intermediate nodes in resource-constrained ad-hoc networks accurately convey packets, the second approach proposes a game theoretic model that uses non-cooperative game theory. This model is based on the idea that game theory may be used. This game reaches a condition of desired equilibrium, which assures that cooperation in multi-hop communication is physically possible, and it is this state that is discovered. In the third algorithm, we present a detection approach that locates malicious nodes in multihop hierarchical ad-hoc networks by employing binary search and control packets. We have shown that the cluster head is capable of accurately identifying the malicious node by analysing the sequences of packets that are dropped along the path leading from a source node to the cluster head. A lightweight symmetric encryption technique that uses Binary Playfair is presented here as a means of safeguarding the transport of data. We demonstrate via experimentation that the suggested encryption method is efficient with regard to the amount of energy used, the amount of time required for encryption, and the memory overhead. This lightweight encryption technique is used in clustered wireless ad-hoc networks to reduce the likelihood of a sybil attack occurring in such networks
Kumar, Ravula Arun, Konda, Srikar Goud, Karnati, Ramesh, Kumar.E, Ravi, NarenderRavula.  2022.  A Diagnostic survey on Sybil attack on cloud and assert possibilities in risk mitigation. 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR). :1–6.
Any decentralized, biased distributed network is susceptible to the Sybil malicious attack, in which a malicious node masquerades as numerous different nodes, collectively referred to as Sybil nodes, causing the network to become unresponsive. Cloud computing environments are characterized by their loosely linked nature, which means that no node has comprehensive information of the entire system. In order to prevent Sybil attacks in cloud computing systems, it is necessary to detect them as soon as they occur. The network’s ability to function properly A Sybil attacker has the ability to construct. It is necessary to have multiple identities on a single physical device in order to execute a concerted attack on the network or switch between networks identities in order to make the detection process more difficult, and thereby lack of accountability is being promoted throughout the network. The purpose of this study is to Various varieties of Sybil assaults have been documented, including those that occur in Peer-to-peer reputation systems, self-organizing networks, and other similar technologies. The topic of social network systems is discussed. In addition, there are other approaches in which it has been urged over time that they be reduced or eliminated Their potential risks are also thoroughly investigated.
Sarwar, Asima, Hasan, Salva, Khan, Waseem Ullah, Ahmed, Salman, Marwat, Safdar Nawaz Khan.  2022.  Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Garcia, Carla E., Camana, Mario R., Koo, Insoo.  2022.  DNN aided PSO based-scheme for a Secure Energy Efficiency Maximization in a cooperative NOMA system with a non-linear EH. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN). :155–160.
Physical layer security is an emerging security area to tackle wireless security communications issues and complement conventional encryption-based techniques. Thus, we propose a novel scheme based on swarm intelligence optimization technique and a deep neural network (DNN) for maximizing the secrecy energy efficiency (SEE) in a cooperative relaying underlay cognitive radio- and non-orthogonal multiple access (NOMA) system with a non-linear energy harvesting user which is exposed to multiple eavesdroppers. Satisfactorily, simulation results show that the proposed particle swarm optimization (PSO)-DNN framework achieves close performance to that of the optimal solutions, with a meaningful reduction in computation complexity.
Petrenko, Vyacheslav, Tebueva, Fariza, Ryabtsev, Sergey, Antonov, Vladimir, Struchkov, Igor.  2022.  Data Based Identification of Byzantine Robots for Collective Decision Making. 2022 13th Asian Control Conference (ASCC). :1724–1727.
The development of new types of technology actualizes the issues of ensuring their information security. The aim of the work is to increase the security of the collective decision-making process in swarm robotic systems from negative impacts by identifying malicious robots. It is proposed to use confidence in choosing an alternative when reaching a consensus as a criterion for identifying malicious robots - a malicious robot, having a special behavior strategy, does not fully take into account the signs of the external environment and information from other robots, which means that such a robot will change its mind with characteristic features for each malicious strategy, and its degree of confidence will be different from the usual voting robot. The modeling performed and the obtained experimental data on three types of malicious behavioral strategies demonstrate the possibility of using the degree of confidence to identify malicious robots. The advantages of the approach are taking into account a large number of alternatives and universality, which lies in the fact that the method is based on the mechanisms of collective decision-making, which proceed in the same way on various hardware platforms of swarm robotic systems. The proposed method can serve as a basis for the development of more complex security mechanisms in swarm robotic systems.
Dharma Putra, Guntur, Kang, Changhoon, Kanhere, Salil S., Won-Ki Hong, James.  2022.  DeTRM: Decentralised Trust and Reputation Management for Blockchain-based Supply Chains. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—5.
Blockchain has the potential to enhance supply chain management systems by providing stronger assurance in transparency and traceability of traded commodities. However, blockchain does not overcome the inherent issues of data trust in IoT enabled supply chains. Recent proposals attempt to tackle these issues by incorporating generic trust and reputation management methods, which do not entirely address the complex challenges of supply chain operations and suffers from significant drawbacks. In this paper, we propose DeTRM, a decentralised trust and reputation management solution for supply chains, which considers complex supply chain operations, such as splitting or merging of product lots, to provide a coherent trust management solution. We resolve data trust by correlating empirical data from adjacent sensor nodes, using which the authenticity of data can be assessed. We design a consortium blockchain, where smart contracts play a significant role in quantifying trustworthiness as a numerical score from different perspectives. A proof-of-concept implementation in Hyperledger Fabric shows that DeTRM is feasible and only incurs relatively small overheads compared to the baseline.
Swain, Satyananda, Patra, Manas Ranjan.  2022.  A Distributed Agent-Oriented Framework for Blockchain-Enabled Supply Chain Management. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Blockchain has emerged as a leading technological innovation because of its indisputable safety and services in a distributed setup. Applications of blockchain are rising covering varied fields such as financial transactions, supply chains, maintenance of land records, etc. Supply chain management is a potential area that can immensely benefit from blockchain technology (BCT) along with smart contracts, making supply chain operations more reliable, safer, and trustworthy for all its stakeholders. However, there are numerous challenges such as scalability, coordination, and safety-related issues which are yet to be resolved. Multi-agent systems (MAS) offer a completely new dimension for scalability, cooperation, and coordination in distributed culture. MAS consists of a collection of automated agents who can perform a specific task intelligently in a distributed environment. In this work, an attempt has been made to develop a framework for implementing a multi-agent system for a large-scale product manufacturing supply chain with blockchain technology wherein the agents communicate with each other to monitor and organize supply chain operations. This framework eliminates many of the weaknesses of supply chain management systems. The overall goal is to enhance the performance of SCM in terms of transparency, traceability, trustworthiness, and resilience by using MAS and BCT.
2022-12-23
Rodríguez, Elsa, Fukkink, Max, Parkin, Simon, van Eeten, Michel, Gañán, Carlos.  2022.  Difficult for Thee, But Not for Me: Measuring the Difficulty and User Experience of Remediating Persistent IoT Malware. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :392–409.
Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
Duby, Adam, Taylor, Teryl, Bloom, Gedare, Zhuang, Yanyan.  2022.  Detecting and Classifying Self-Deleting Windows Malware Using Prefetch Files. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0745–0751.
Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity.
Neyaz, Ashar, Shashidhar, Narasimha, Varol, Cihan, Rasheed, Amar.  2022.  Digital Forensics Analysis of Windows 11 Shellbag with Comparative Tools. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–10.
Operating systems have various components that produce artifacts. These artifacts are the outcome of a user’s interaction with an application or program and the operating system’s logging capabilities. Thus, these artifacts have great importance in digital forensics investigations. For example, these artifacts can be utilized in a court of law to prove the existence of compromising computer system behaviors. One such component of the Microsoft Windows operating system is Shellbag, which is an enticing source of digital evidence of high forensics interest. The presence of a Shellbag entry means a specific user has visited a particular folder and done some customizations such as accessing, sorting, resizing the window, etc. In this work, we forensically analyze Shellbag as we talk about its purpose, types, and specificity with the latest version of the Windows 11 operating system and uncover the registry hives that contain Shellbag customization information. We also conduct in-depth forensics examinations on Shellbag entries using three tools of three different types, i.e., open-source, freeware, and proprietary tools. Lastly, we compared the capabilities of tools utilized in Shellbag forensics investigations.
Marková, Eva, Sokol, Pavol, Kováćová, Kristína.  2022.  Detection of relevant digital evidence in the forensic timelines. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–7.
Security incident handling and response are essen-tial parts of every organization's information and cyber security. Security incident handling consists of several phases, among which digital forensic analysis has an irreplaceable place. Due to particular digital evidence being recorded at a specific time, timelines play an essential role in analyzing this digital evidence. One of the vital tasks of the digital forensic investigator is finding relevant records in this timeline. This operation is performed manually in most cases. This paper focuses on the possibilities of automatically identifying digital evidence pertinent to the case and proposes a model that identifies this digital evidence. For this purpose, we focus on Windows operating system and the NTFS file system and use outlier detection (Local Outlier Factor method). Collected digital evidence is preprocessed, transformed to binary values, and aggregated by file system inodes and names. Subsequently, we identify digital records (file inodes, file names) relevant to the case. This paper analyzes the combinations of attributes, aggregation functions, local outlier factor parameters, and their impact on the resulting selection of relevant file inodes and file names.
2022-12-20
Rakin, Adnan Siraj, Chowdhuryy, Md Hafizul Islam, Yao, Fan, Fan, Deliang.  2022.  DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories. 2022 IEEE Symposium on Security and Privacy (SP). :1157–1174.
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., 1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades).
ISSN: 2375-1207
2022-12-09
Legashev, Leonid, Grishina, Luybov.  2022.  Development of an Intrusion Detection System Prototype in Mobile Ad Hoc Networks Based on Machine Learning Methods. 2022 International Russian Automation Conference (RusAutoCon). :171—175.
Wireless ad hoc networks are characterized by dynamic topology and high node mobility. Network attacks on wireless ad hoc networks can significantly reduce performance metrics, such as the packet delivery ratio from the source to the destination node, overhead, throughput, etc. The article presents an experimental study of an intrusion detection system prototype in mobile ad hoc networks based on machine learning. The experiment is carried out in a MANET segment of 50 nodes, the detection and prevention of DDoS and cooperative blackhole attacks are investigated. The dependencies of features on the type of network traffic and the dependence of performance metrics on the speed of mobile nodes in the network are investigated. The conducted experimental studies show the effectiveness of an intrusion detection system prototype on simulated data.
Reynvoet, Maxim, Gheibi, Omid, Quin, Federico, Weyns, Danny.  2022.  Detecting and Mitigating Jamming Attacks in IoT Networks Using Self-Adaptation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :7—12.
Internet of Things (IoT) networks consist of small devices that use a wireless communication to monitor and possibly control the physical world. A common threat to such networks are jamming attacks, a particular type of denial of service attack. Current research highlights the need for the design of more effective and efficient anti-jamming techniques that can handle different types of attacks in IoT networks. In this paper, we propose DeMiJA, short for Detection and Mitigation of Jamming Attacks in IoT, a novel approach to deal with different jamming attacks in IoT networks. DeMiJA leverages architecture-based adaptation and the MAPE-K reference model (Monitor-Analyze-Plan-Execute that share Knowledge). We present the general architecture of DeMiJA and instantiate the architecture to deal with jamming attacks in the DeltaIoT exemplar. The evaluation shows that DeMiJA can handle different types of jamming attacks effectively and efficiently, with neglectable overhead.
Urien, Pascal.  2022.  Demonstrating Virtual IO For Internet Of Things Devices Secured By TLS Server In Secure Element. 2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI). :111—112.
This demonstration presents an internet of things device (thermostat), whose security is enforced by a secure element (smartcard) running TLS server, and using Virtual Input/Ouput technology. The board comprises a Wi-Fi system on chip (SoC), a micro-controller managing sensor (temperature probe) and actuator (relay), and a javacard. All device messages are sent/received over TLS, and processed by the secure element. Some of them are exported to micro-controller in clear form, which returns a response, sent over TLS by the smartcard.
He, Song, Shi, Xiaohong, Huang, Yan, Chen, Gong, Tang, Huihui.  2022.  Design of Information System Security Evaluation Management System based on Artificial Intelligence. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :967—970.
In today's society, with the continuous development of artificial intelligence, artificial intelligence technology plays an increasingly important role in social and economic development, and hass become the fastest growing, most widely used and most influential high-tech in the world today one. However, at the same time, information technology has also brought threats to network security to the entire network world, which makes information systems also face huge and severe challenges, which will affect the stability and development of society to a certain extent. Therefore, comprehensive analysis and research on information system security is a very necessary and urgent task. Through the security assessment of the information system, we can discover the key hidden dangers and loopholes that are hidden in the information source or potentially threaten user data and confidential files, so as to effectively prevent these risks from occurring and provide effective solutions; at the same time To a certain extent, prevent virus invasion, malicious program attacks and network hackers' intrusive behaviors. This article adopts the experimental analysis method to explore how to apply the most practical, advanced and efficient artificial intelligence theory to the information system security assessment management, so as to further realize the optimal design of the information system security assessment management system, which will protect our country the information security has very important meaning and practical value. According to the research results, the function of the experimental test system is complete and available, and the security is good, which can meet the requirements of multi-user operation for security evaluation of the information system.
2022-12-06
Rani, Jyoti, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Detailed Review of the IoT with Detection of Sinkhole Attacks in RPL based network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things” (IoT) is internetworking of physical devices known as 'things', algorithms, equipment and techniques that allow communication with another device, equipment and software over the network. And with the advancement in data communication, every device must be connected via the Internet. For this purpose, we use resource-constrained sensor nodes for collecting data from homes, offices, hospitals, industries and data centers. But various vulnerabilities may ruin the functioning of the sensor nodes. Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized, secure routing protocol designed for the 6LoWPAN IoT network. It's a proactive routing protocol that works on the destination-oriented topology to perform safe routing. The Sinkhole is a networking attack that destroys the topology of the RPL protocol as the attacker node changes the route of all the traffic in the IoT network. In this paper, we have given a survey of Sinkhole attacks in IoT and proposed different methods for preventing and detecting these attacks in a low-power-based IoT network.

2022-12-01
Heinrichs, Markus, Kronberger, Rainer.  2021.  Digitally Tunable Frequency Selective Surface for a Physical Layer Security System in the 5 GHz Wi-Fi Band. 2020 International Symposium on Antennas and Propagation (ISAP). :267–268.
In this work, a digitally tunable Frequency Selec-tive Surface (FSS) for use in Physical Layer Security (PLS) systems is presented. The design of a unit cell is described, which is optimized by simulations for the frequency range of 5 GHz indoor Wi-Fi. Based on the developed unit cell, a prototype with 64 binary switchable elements is set up. The performance of the surface is demonstrated by measurements.
Fang, Xiaojie, Yin, Xinyu, Zhang, Ning, Sha, Xuejun, Zhang, Hongli, Han, Zhu.  2021.  Demonstrating Physical Layer Security Via Weighted Fractional Fourier Transform. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Recently, there has been significant enthusiasms in exploiting physical (PHY-) layer characteristics for secure wireless communication. However, most existing PHY-layer security paradigms are information theoretical methodologies, which are infeasible to real and practical systems. In this paper, we propose a weighted fractional Fourier transform (WFRFT) pre-coding scheme to enhance the security of wireless transmissions against eavesdropping. By leveraging the concept of WFRFT, the proposed scheme can easily change the characteristics of the underlying radio signals to complement and secure upper-layer cryptographic protocols. We demonstrate a running prototype based on the LTE-framework. First, the compatibility between the WFRFT pre-coding scheme and the conversational LTE architecture is presented. Then, the security mechanism of the WFRFT pre-coding scheme is demonstrated. Experimental results validate the practicability and security performance superiority of the proposed scheme.
2022-11-18
Yüksel, Ulaş, Sözer, Hasan.  2021.  Dynamic Filtering and Prioritization of Static Code Analysis Alerts. 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :294–295.
We propose an approach for filtering and prioritizing static code analysis alerts while these alerts are being reviewed by the developer. We construct a Prolog knowledge base that captures the data flow information in the source code as well as the reported alerts, their properties and associations with the data flow. The knowledge base is updated as the developer reviews the listed alerts and decides whether they point at an actual fault or not. These updates provide useful information since some of the alerts of the same type can be related in terms of their root cause. Hence, dynamically updated knowledge base can be queried to eliminate or prioritize the remaining alerts in the review list. We present a motivating example to illustrate the approach and its automation by integrating a set of tools.
Mezhuev, Pavel, Gerasimov, Alexander, Privalov, Petr, Butkevich, Veronika.  2021.  A dynamic algorithm for source code static analysis. 2021 Ivannikov Memorial Workshop (IVMEM). :57–60.
A source code static analysis became an industrial standard for program source code issues early detection. As one of requirements to such kind of analysis is high performance to provide response of automatic code checking tool as early as possible as far as such kind of tools integrates to Continuous testing and Integration systems. In this paper we propose a source code static analysis algorithm for solving performance issue of source code static analysis tool in general way.
Sun, Xiaohan, Cheng, Yunchang, Qu, Xiaojie, Li, Hang.  2021.  Design and Implementation of Security Test Pipeline based on DevSecOps. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:532—535.
In recent years, a variety of information security incidents emerge in endlessly, with different types. Security vulnerability is an important factor leading to the security risk of information system, and is the most common and urgent security risk in information system. The research goal of this paper is to seamlessly integrate the security testing process and the integration process of software construction, deployment, operation and maintenance. Through the management platform, the security testing results are uniformly managed and displayed in reports, and the project management system is introduced to develop, regress and manage the closed-loop security vulnerabilities. Before the security vulnerabilities cause irreparable damage to the information system, the security vulnerabilities are found and analyzed Full vulnerability, the formation of security vulnerability solutions to minimize the threat of security vulnerabilities to the information system.
Juan, Li, Lina, Yan, Jingyu, Wang.  2021.  Design and Implementation of a Risk Assessment System for Information Communication Equipment. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :10—15.
In order to ensure the security of information assets and standardize the risk assessment and inspection workflow of information assets. This paper has designed and developed a risk assessment system for information and communication equipment with simple operation, offline assessment, and diversified external interfaces. The process of risk assessment can be realized, which effectively improves the efficiency of risk assessment.
2022-11-08
Wshah, Safwan, Shadid, Reem, Wu, Yuhao, Matar, Mustafa, Xu, Beilei, Wu, Wencheng, Lin, Lei, Elmoudi, Ramadan.  2020.  Deep Learning for Model Parameter Calibration in Power Systems. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
In power systems, having accurate device models is crucial for grid reliability, availability, and resiliency. Existing model calibration methods based on mathematical approaches often lead to multiple solutions due to the ill-posed nature of the problem, which would require further interventions from the field engineers in order to select the optimal solution. In this paper, we present a novel deep-learning-based approach for model parameter calibration in power systems. Our study focused on the generator model as an example. We studied several deep-learning-based approaches including 1-D Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), which were trained to estimate model parameters using simulated Phasor Measurement Unit (PMU) data. Quantitative evaluations showed that our proposed methods can achieve high accuracy in estimating the model parameters, i.e., achieved a 0.0079 MSE on the testing dataset. We consider these promising results to be the basis for further exploration and development of advanced tools for model validation and calibration.