Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2023-04-28
Zhang, Zongyu, Zhou, Chengwei, Yan, Chenggang, Shi, Zhiguo.  2022.  Deterministic Ziv-Zakai Bound for Compressive Time Delay Estimation. 2022 IEEE Radar Conference (RadarConf22). :1–5.
Compressive radar receiver has attracted a lot of research interest due to its capability to keep balance between sub-Nyquist sampling and high resolution. In evaluating the performance of compressive time delay estimator, Cramer-Rao bound (CRB) has been commonly utilized for lower bounding the mean square error (MSE). However, behaving as a local bound, CRB is not tight in the a priori performance region. In this paper, we introduce the Ziv-Zakai bound (ZZB) methodology into compressive sensing framework, and derive a deterministic ZZB for compressive time delay estimators as a function of the compressive sensing kernel. By effectively incorporating the a priori information of the unknown time delay, the derived ZZB performs much tighter than CRB especially in the a priori performance region. Simulation results demonstrate that the derived ZZB outperforms the Bayesian CRB over a wide range of signal-to-noise ratio, where different types of a priori distribution of time delay are considered.
Mahind, Umesh, Karia, Deepak.  2022.  Development and Analysis of Sparse Spasmodic Sampling Techniques. 2022 International Conference on Edge Computing and Applications (ICECAA). :818–823.
The Compressive Sensing (CS) has wide range of applications in various domains. The sampling of sparse signal, which is periodic or aperiodic in nature, is still an out of focus topic. This paper proposes novel Sparse Spasmodic Sampling (SSS) techniques for different sparse signal in original domain. The SSS techniques are proposed to overcome the drawback of the existing CS sampling techniques, which can sample any sparse signal efficiently and also find location of non-zero components in signals. First, Sparse Spasmodic Sampling model-1 (SSS-1) which samples random points and also include non-zero components is proposed. Another sampling technique, Sparse Spasmodic Sampling model-2 (SSS-2) has the same working principle as model-1 with some advancements in design. It samples equi-distance points unlike SSS-1. It is demonstrated that, using any sampling technique, the signal is able to reconstruct with a reconstruction algorithm with a smaller number of measurements. Simulation results are provided to demonstrate the effectiveness of the proposed sampling techniques.
Chen, Ligeng, He, Zhongling, Wu, Hao, Xu, Fengyuan, Qian, Yi, Mao, Bing.  2022.  DIComP: Lightweight Data-Driven Inference of Binary Compiler Provenance with High Accuracy. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :112–122.
Binary analysis is pervasively utilized to assess software security and test vulnerabilities without accessing source codes. The analysis validity is heavily influenced by the inferring ability of information related to the code compilation. Among the compilation information, compiler type and optimization level, as the key factors determining how binaries look like, are still difficult to be inferred efficiently with existing tools. In this paper, we conduct a thorough empirical study on the binary's appearance under various compilation settings and propose a lightweight binary analysis tool based on the simplest machine learning method, called DIComP to infer the compiler and optimization level via most relevant features according to the observation. Our comprehensive evaluations demonstrate that DIComP can fully recognize the compiler provenance, and it is effective in inferring the optimization levels with up to 90% accuracy. Also, it is efficient to infer thousands of binaries at a millisecond level with our lightweight machine learning model (1MB).
Parhizgar, Nazanin, Jamshidi, Ali, Setoodeh, Peyman.  2022.  Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks using Machine Learning. 2022 30th International Conference on Electrical Engineering (ICEE). :974–979.
Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
2023-04-14
Pise, Rohini, Patil, Sonali.  2022.  A Deep Dive into Blockchain-based Smart Contract-specific Security Vulnerabilities. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–6.
Blockchain smart contracts are prevalent nowadays as numerous applications are developed based on this feature. Though smart contracts are important and widely used, they contain certain vulnerabilities. This paper discusses various security issues that arise in smart contract applications. They are categorized in the smart contract platform, the applications that integrate with the Blockchain, and the vulnerabilities in smart contract code. A detailed study of smart contract-specific vulnerabilities and the defense against those vulnerabilities are presented in this article. Because of certain limitations of platforms or programming language used to write smart contract, there are possibilities of attacks on smart contracts. Hence different security measures or precautions to be taken while writing the smart contract code is discussed in this article. This will prevent the potential attacks happening on Blockchain distributed applications.
Shaocheng, Wu, Hefang, Jiang, Sijian, Li, Tao, Liu.  2022.  Design of a chaotic sequence cipher algorithm. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :320–323.
To protect the security of video information use encryption technology to be effective means. In practical applications, the structural complexity and real-time characteristics of video information make the encryption effect of some commonly used algorithms have some shortcomings. According to the characteristics of video, to design practical encryption algorithm is necessary. This paper proposed a novel scheme of chaotic image encryption, which is based on scrambling and diffusion structure. Firstly, the breadth first search method is used to scramble the pixel position in the original image, and then the pseudo-random sequence generated by the time-varying bilateral chaotic symbol system is used to transform each pixel of the scrambled image ratio by ratio or encryption. In the simulation experiment and analysis, the performance of the encrypted image message entropy displays that the new chaotic image encryption scheme is effective.
Kimbrough, Turhan, Tian, Pu, Liao, Weixian, Blasch, Erik, Yu, Wei.  2022.  Deep CAPTCHA Recognition Using Encapsulated Preprocessing and Heterogeneous Datasets. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an important security technique designed to deter bots from abusing software systems, which has broader applications in cyberspace. CAPTCHAs come in a variety of forms, including the deciphering of obfuscated text, transcribing of audio messages, and tracking mouse movement, among others. This paper focuses on using deep learning techniques to recognize text-based CAPTCHAs. In particular, our work focuses on generating training datasets using different CAPTCHA schemes, along with a pre-processing technique allowing for character-based recognition. We have encapsulated the CRABI (CAPTCHA Recognition with Attached Binary Images) framework to give an image multiple labels for improvement in feature extraction. Using real-world datasets, performance evaluations are conducted to validate the efficacy of our proposed approach on several neural network architectures (e.g., custom CNN architecture, VGG16, ResNet50, and MobileNet). The experimental results confirm that over 90% accuracy can be achieved on most models.
Lee, Bowhyung, Han, Donghwa, Lee, Namyoon.  2022.  Demo: Real-Time Implementation of Block Orthogonal Sparse Superposition Codes. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :1–2.
Short-packet communication is a key enabler of various Internet of Things applications that require higher-level security. This proposal briefly reviews block orthogonal sparse superposition (BOSS) codes, which are applicable for secure short-packet transmissions. In addition, following the IEEE 802.11a Wi-Fi standards, we demonstrate the real-time performance of secure short packet transmission using a software-defined radio testbed to verify the feasibility of BOSS codes in a multi-path fading channel environment.
ISSN: 2694-2941
2023-03-31
Soderi, Mirco, Kamath, Vignesh, Breslin, John G..  2022.  A Demo of a Software Platform for Ubiquitous Big Data Engineering, Visualization, and Analytics, via Reconfigurable Micro-Services, in Smart Factories. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :1–3.
Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
ISSN: 2693-8340
Vineela, A., Kasiviswanath, N., Bindu, C. Shoba.  2022.  Data Integrity Auditing Scheme for Preserving Security in Cloud based Big Data. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :609–613.
Cloud computing has become an integral part of medical big data. The cloud has the capability to store the large data volumes has attracted more attention. The integrity and privacy of patient data are some of the issues that cloud-based medical big data should be addressed. This research work introduces data integrity auditing scheme for cloud-based medical big data. This will help minimize the risk of unauthorized access to the data. Multiple copies of the data are stored to ensure that it can be recovered quickly in case of damage. This scheme can also be used to enable doctors to easily track the changes in patients' conditions through a data block. The simulation results proved the effectiveness of the proposed scheme.
ISSN: 2768-5330
2023-03-17
Hasnaeen, Shah Md Nehal, Chrysler, Andrew.  2022.  Detection of Malware in UHF RFID User Memory Bank using Random Forest Classifier on Signal Strength Data in the Frequency Domain. 2022 IEEE International Conference on RFID (RFID). :47–52.
A method of detecting UHF RFID tags with SQL in-jection virus code written in its user memory bank is explored. A spectrum analyzer took signal strength readings in the frequency spectrum while an RFID reader was reading the tag. The strength of the signal transmitted by the RFID tag in the UHF range, more specifically within the 902–908 MHz sub-band, was used as data to train a Random Forest model for Malware detection. Feature reduction is accomplished by dividing the observed spectrum into 15 ranges with a bandwidth of 344 kHz each and detecting the number of maxima in each range. The malware-infested tag could be detected more than 80% of the time. The frequency ranges contributing most in this detection method were the low (903.451-903.795 MHz, 902.418-902.762 MHz) and high (907.238-907.582 MHz) bands in the observed spectrum.
ISSN: 2573-7635
Mohammadi, Ali, Badewa, Oluwaseun A., Chulaee, Yaser, Ionel, Dan M., Essakiappan, Somasundaram, Manjrekar, Madhav.  2022.  Direct-Drive Wind Generator Concept with Non-Rare-Earth PM Flux Intensifying Stator and Reluctance Outer Rotor. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :582–587.
This paper proposes a novel concept for an electric generator in which both ac windings and permanent magnets (PMs) are placed in the stator. Concentrated windings with a special pattern and phase coils placed in separate slots are employed. The PMs are positioned in a spoke-type field concentrating arrangement, which provides high flux intensification and enables the use of lower remanence and energy non-rare earth magnets. The rotor is exterior to the stator and has a simple and robust reluctance-type configuration without any active electromagnetic excitation components. The principle of operation is introduced based on the concept of virtual work with closed-form analytical airgap flux density distributions. Initial and parametric design studies were performed using electromagnetic FEA for a 3MW direct-drive wind turbine generator employing PMs of different magnetic remanence and specific energy. Results include indices for the goodness of excitation and the goodness of the electric machine designs; loss; and efficiency estimations, indicating that performance comparable to PM synchronous designs employing expensive and critical supply rare-earth PMs may be achieved with non-rare earth PMs using the proposed configuration.
ISSN: 2572-6013
He, Ze, Li, Shaoqing.  2022.  A Design of Key Generation Unit Based on SRAM PUF. 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT). :136–140.
In the era of big data, information security is faced with many threats, among which memory data security of intelligent devices is an important link. Attackers can read the memory of specific devices, and then steal secrets, alter data, affect the operation of intelligent devices, and bring security threats. Data security is usually protected by encryption algorithm for device ciphertext conversion, so the safe generation and use of key becomes particularly important. In this paper, based on the advantages of SRAM PUF, such as real-time generation, power failure and disappearance, safety and reliability, a key generation unit is designed and implemented. BCH code is used as the error correction algorithm to generate 128-bit stable key, which provides a guarantee for the safe storage of intelligent devices.
Ayoub, Harith Ghanim.  2022.  Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
2023-03-03
S, Bakkialakshmi V., Sudalaimuthu, T..  2022.  Dynamic Cat-Boost Enabled Keystroke Analysis for User Stress Level Detection. 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). :556–560.
The impact of digital gadgets is enormous in the current Internet world because of the easy accessibility, flexibility and time-saving benefits for the consumers. The number of computer users is increasing every year. Meanwhile, the time spent and the computers also increased. Computer users browse the internet for various information gathering and stay on the internet for a long time without control. Nowadays working people from home also spend time with the smart devices, computers, and laptops, for a longer duration to complete professional work, personal work etc. the proposed study focused on deriving the impact factors of Smartphones by analyzing the keystroke dynamics Based on the usage pattern of keystrokes the system evaluates the stress level detection using machine learning techniques. In the proposed study keyboard users are intended for testing purposes. Volunteers of 200 members are collectively involved in generating the test dataset. They are allowed to sit for a certain frame of time to use the laptop in the meanwhile the keystroke of the Mouse and keyboard are recorded. The system reads the dataset and trains the model using the Dynamic Cat-Boost algorithm (DCB), which acts as the classification model. The evaluation metrics are framed by calculating Euclidean distance (ED), Manhattan Distance (MahD), Mahalanobis distance (MD) etc. Quantitative measures of DCB are framed through Accuracy, precision and F1Score.
Saxena, Anish, Panda, Biswabandan.  2022.  DABANGG: A Case for Noise Resilient Flush-Based Cache Attacks. 2022 IEEE Security and Privacy Workshops (SPW). :323–334.
Flush-based cache attacks like Flush+Reload and Flush+Flush are highly precise and effective. Most of the flush-based attacks provide high accuracy in controlled and isolated environments where attacker and victim share OS pages. However, we observe that these attacks are prone to low accuracy on a noisy multi-core system with co-running applications. Two root causes for the varying accuracy of flush-based attacks are: (i) the dynamic nature of core frequencies that fluctuate depending on the system load, and (ii) the relative placement of victim and attacker threads in the processor, like same or different physical cores. These dynamic factors critically affect the execution latency of key instructions like clflush and mov, rendering the pre-attack calibration step ineffective.We propose DABANGG, a set of novel refinements to make flush-based attacks resilient to system noise by making them aware of frequency and thread placement. First, we introduce pre-attack calibration that is aware of instruction latency variation. Second, we use low-cost attack-time optimizations like fine-grained busy waiting and periodic feedback about the latency thresholds to improve the effectiveness of the attack. Finally, we provide victim-specific parameters that significantly improve the attack accuracy. We evaluate DABANGG-enabled Flush+Reload and Flush+Flush attacks against the standard attacks in side-channel and covert-channel experiments with varying levels of compute, memory, and IO-intensive system noise. In all scenarios, DABANGG+Flush+Reload and DABANGG+Flush+Flush outperform the standard attacks in stealth and accuracy.
ISSN: 2770-8411
Jemin, V M, Kumar, A Senthil, Thirunavukkarasu, V, Kumar, D Ravi, Manikandan, R..  2022.  Dynamic Key Management based ACO Routing for Wireless Sensor Networks. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :194–197.
Ant Colony Optimization is applied to design a suitable and shortest route between the starting node point and the end node point in the Wireless Sensor Network (WSN). In general ant colony algorithm plays a good role in path planning process that can also applied in improving the network security. Therefore to protect the network from the malicious nodes an ACO based Dynamic Key Management (ACO-DKM) scheme is proposed. The routes are diagnosed through ACO method also the actual coverage distance and pheromone updating strategy is updated simultaneously that prevents the node from continuous monitoring. Simulation analysis gives the efficiency of the proposed scheme.
Yuan, Wen.  2022.  Development of Key Technologies of Legal Case Management Information System Considering QoS Optimization. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :693–696.
This paper conducts the development of the key technologies of the legal case management information system considering QoS optimization. The designed system administrator can carry out that the all-round management of the system, including account management, database management, security setting management, core data entry management, and data statistics management. With this help, the QoS optimization model is then integrated to improve the systematic performance of the system as the key technology. Similar to the layering in the data source, the data set is composed of the fields of the data set, and contains the relevant information of the attribute fields of various entity element categories. Furthermore, the designed system is analyzed and implemented on the public data sets to show the results.
Tao, Jingjing, Zhang, Mingsheng.  2022.  Development of Key Technologies of Legal Case Management Information System Based on J2EE. 2022 International Conference on Innovation, Knowledge, and Management (ICIKM). :49–53.
With the development of society, people have higher and higher requirements for the quality of life, and the management of legal cases has become more and more important. In this case, the research on how to realize electronization and networking has become the inevitable demand of the current information age. Therefore, this paper designs and develops the legal case management information system based on J2EE. Firstly, this paper introduces the related technologies of J2EE, then expounds the importance of legal case management informatization, and designs the legal case management information system according to the technical framework of J2EE. Finally, the performance of the system is tested. The test results show that the load capacity of the system is strong, the response time is 2–4 seconds, the resource utilization is relatively low, and the number of concurrent users is maintained at about 150. These show that the performance of the system fully meets the needs of legal case information management.
2023-02-24
Sha, Feng, Wei, Ying.  2022.  The Design of Campus Security Early Warning System based on IPv6 Wireless Sensing. 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). :103—106.
Based on the campus wireless IPv6 network system, using WiFi contactless sensing and positioning technology and action recognition technology, this paper designs a new campus security early warning system. The characteristic is that there is no need to add new monitoring equipment. As long as it is the location covered by the wireless IPv6 network, personnel quantity statistics and personnel body action status display can be realized. It plays an effective monitoring supplement to the places that cannot be covered by video surveillance in the past, and can effectively prevent campus violence or other emergencies.
Zhang, Guangya, Xu, Xiang.  2022.  Design and Practice of Campus Network Based on IPv6 Convergence Access in Guangdong Ocean University. 2022 International Conference on Computation, Big-Data and Engineering (ICCBE). :1—4.
For the smart campus of Guangdong Ocean University, we analyze the current situation of the university's network construction, as well as the problems in infrastructure, equipment, operation management, and network security. We focus on the construction objectives and design scheme of the smart campus, including the design of network structure and basic network services. The followings are considered in this study: optimization of network structure simplification, business integration, multi-operator access environment, operation and maintenance guarantee system, organic integration of production, and teaching and research after network leveling transformation.
2023-02-17
Khan, Muhammad Maaz Ali, Ehabe, Enow Nkongho, Mailewa, Akalanka B..  2022.  Discovering the Need for Information Assurance to Assure the End Users: Methodologies and Best Practices. 2022 IEEE International Conference on Electro Information Technology (eIT). :131–138.

The use of software to support the information infrastructure that governments, critical infrastructure providers and businesses worldwide rely on for their daily operations and business processes is gradually becoming unavoidable. Commercial off-the shelf software is widely and increasingly used by these organizations to automate processes with information technology. That notwithstanding, cyber-attacks are becoming stealthier and more sophisticated, which has led to a complex and dynamic risk environment for IT-based operations which users are working to better understand and manage. This has made users become increasingly concerned about the integrity, security and reliability of commercial software. To meet up with these concerns and meet customer requirements, vendors have undertaken significant efforts to reduce vulnerabilities, improve resistance to attack and protect the integrity of the products they sell. These efforts are often referred to as “software assurance.” Software assurance is becoming very important for organizations critical to public safety and economic and national security. These users require a high level of confidence that commercial software is as secure as possible, something only achieved when software is created using best practices for secure software development. Therefore, in this paper, we explore the need for information assurance and its importance for both organizations and end users, methodologies and best practices for software security and information assurance, and we also conducted a survey to understand end users’ opinions on the methodologies researched in this paper and their impact.

ISSN: 2154-0373

Ying, Ma, Tingting, Zhou.  2022.  Data Interface Matching and Information Security Measurement of Scientific and Technological Innovation Measurement Analysis and Multi-Agent Economic MIS. 2022 International Conference on Edge Computing and Applications (ICECAA). :510–513.
This paper establishes a vector autoregressive model based on the current development status of the digital economy and studies the correlation between the digital economy and economic growth MIS from a dynamic perspective, and found that the digital economy has a strong supporting role in the growth of the total economic volume. The coordination degree model calculates the scientific and technological innovation capabilities of China's 30 provinces (except Tibet) from 2018 to 2022, and the coordination, green, open, and shared level of high-quality economic development. The basic principles of the composition of the security measurement are expounded, and the measurement information model can be used as a logic model. The analysis of security measure composition summarizes the selection principle and selection process of security measurement, and analyzes and compares the measure composition methods in several typical security measurement methods.
Dreyer, Julian, Tönjes, Ralf, Aschenbruck, Nils.  2022.  Decentralizing loT Public- Key Storage using Distributed Ledger Technology. 2022 International Wireless Communications and Mobile Computing (IWCMC). :172–177.
The secure Internet of Things (loT) increasingly relies on digital cryptographic signatures which require a private signature and public verification key. By their intrinsic nature, public keys are meant to be accessible to any interested party willing to verify a given signature. Thus, the storing of such keys is of great concern, since an adversary shall not be able to tamper with the public keys, e.g., on a local filesystem. Commonly used public-key infrastructures (PKIs), which handle the key distribution and storage, are not feasible in most use-cases, due to their resource intensity and high complexity. Thus, the general storing of the public verification keys is of notable interest for low-resource loT networks. By using the Distributed Ledger Technology (DLT), this paper proposes a decentralized concept for storing public signature verification keys in a tamper-resistant, secure, and resilient manner. By combining lightweight public-key exchange protocols with the proposed approach, the storing of verification keys becomes scalable and especially suitable for low-resource loT devices. This paper provides a Proof-of-Concept implementation of the DLT public-key store by extending our previously proposed NFC-Key Exchange (NFC-KE) protocol with a decentralized Hyperledger Fabric public-key store. The provided performance analysis shows that by using the decentralized keystore, the NFC- KE protocol gains an increased tamper resistance and overall system resilience while also showing expected performance degradations with a low real-world impact.
ISSN: 2376-6506
Wei, Lizhuo, Xu, Fengkai, Zhang, Ni, Yan, Wei, Chai, Chuchu.  2022.  Dynamic malicious code detection technology based on deep learning. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1–3.
In this paper, the malicious code is run in the sandbox in a safe and controllable environment, the API sequence is deduplicated by the idea of the longest common subsequence, and the CNN and Bi-LSTM are integrated to process and analyze the API sequence. Compared with the method, the method using deep learning can have higher accuracy and work efficiency.