Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2023-06-16
Reddy Sankepally, Sainath, Kosaraju, Nishoak, Mallikharjuna Rao, K.  2022.  Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets. 2022 International Conference on Innovative Trends in Information Technology (ICITIIT). :1—7.
Data is a collection of information from the activities of the real world. The file in which such data is stored after transforming into a form that machines can process is generally known as data set. In the real world, many data sets are not complete, and they contain various types of noise. Missing values is of one such kind. Thus, imputing data of these missing values is one of the significant task of data pre-processing. This paper deals with two real time health care data sets namely life expectancy (LE) dataset and chronic kidney disease (CKD) dataset, which are very different in their nature. This paper provides insights on various data imputation techniques to fill missing values by analyzing them. When coming to Data imputation, it is very common to impute the missing values with measure of central tendencies like mean, median, mode Which can represent the central value of distribution but choosing the apt choice is real challenge. In accordance with best of our knowledge this is the first and foremost paper which provides the complete analysis of impact of basic data imputation techniques on various data distributions which can be classified based on the size of data set, number of missing values, type of data (categorical/numerical), etc. This paper compared and analyzed the original data distribution with the data distribution after each imputation in terms of their skewness, outliers and by various descriptive statistic parameters.
Xiao, Renjie, Yuan, Yong'an, Tan, Zijing, Ma, Shuai, Wang, Wei.  2022.  Dynamic Functional Dependency Discovery with Dynamic Hitting Set Enumeration. 2022 IEEE 38th International Conference on Data Engineering (ICDE). :286—298.
Functional dependencies (FDs) are widely applied in data management tasks. Since FDs on data are usually unknown, FD discovery techniques are studied for automatically finding hidden FDs from data. In this paper, we develop techniques to dynamically discover FDs in response to changes on data. Formally, given the complete set Σ of minimal and valid FDs on a relational instance r, we aim to find the complete set Σ$^\textrm\textbackslashprime$ of minimal and valid FDs on røplus\textbackslashDelta r, where \textbackslashDelta r is a set of tuple insertions and deletions. Different from the batch approaches that compute Σ$^\textrm\textbackslashprime$ on røplus\textbackslashDelta r from scratch, our dynamic method computes Σ$^\textrm\textbackslashprime$ in response to \textbackslashtriangle\textbackslashuparrow. by leveraging the known Σ on r, and avoids processing the whole of r for each update from \textbackslashDelta r. We tackle dynamic FD discovery on røplus\textbackslashDelta r by dynamic hitting set enumeration on the difference-set of røplus\textbackslashDelta r. Specifically, (1) leveraging auxiliary structures built on r, we first present an efficient algorithm to update the difference-set of r to that of røplus\textbackslashDelta r. (2) We then compute Σ$^\textrm\textbackslashprime$, by recasting dynamic FD discovery as dynamic hitting set enumeration on the difference-set of røplus\textbackslashDelta r and developing novel techniques for dynamic hitting set enumeration. (3) We finally experimentally verify the effectiveness and efficiency of our approaches, using real-life and synthetic data. The results show that our dynamic FD discovery method outperforms the batch counterparts on most tested data, even when \textbackslashDelta r is up to 30 % of r.
2023-06-09
Liu, Chengwei, Chen, Sen, Fan, Lingling, Chen, Bihuan, Liu, Yang, Peng, Xin.  2022.  Demystifying the Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM Ecosystem. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :672—684.
Third-party libraries with rich functionalities facilitate the fast development of JavaScript software, leading to the explosive growth of the NPM ecosystem. However, it also brings new security threats that vulnerabilities could be introduced through dependencies from third-party libraries. In particular, the threats could be excessively amplified by transitive dependencies. Existing research only considers direct dependencies or reasoning transitive dependencies based on reachability analysis, which neglects the NPM-specific dependency resolution rules as adapted during real installation, resulting in wrongly resolved dependencies. Consequently, further fine-grained analysis, such as precise vulnerability propagation and their evolution over time in dependencies, cannot be carried out precisely at a large scale, as well as deriving ecosystem-wide solutions for vulnerabilities in dependencies. To fill this gap, we propose a knowledge graph-based dependency resolution, which resolves the inner dependency relations of dependencies as trees (i.e., dependency trees), and investigates the security threats from vulnerabilities in dependency trees at a large scale. Specifically, we first construct a complete dependency-vulnerability knowledge graph (DVGraph) that captures the whole NPM ecosystem (over 10 million library versions and 60 million well-resolved dependency relations). Based on it, we propose a novel algorithm (DTResolver) to statically and precisely resolve dependency trees, as well as transitive vulnerability propagation paths, for each package by taking the official dependency resolution rules into account. Based on that, we carry out an ecosystem-wide empirical study on vulnerability propagation and its evolution in dependency trees. Our study unveils lots of useful findings, and we further discuss the lessons learned and solutions for different stakeholders to mitigate the vulnerability impact in NPM based on our findings. For example, we implement a dependency tree based vulnerability remediation method (DTReme) for NPM packages, and receive much better performance than the official tool (npm audit fix).
Williams, Daniel, Clark, Chelece, McGahan, Rachel, Potteiger, Bradley, Cohen, Daniel, Musau, Patrick.  2022.  Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
Low, Xuan, Yang, DeQuan, Yang, DengPan.  2022.  Design and Implementation of Industrial Control Cyber Range System. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :166—170.
In the 21st century, world-leading industries are under the accelerated development of digital transformation. Along with information and data resources becoming more transparent on the Internet, many new network technologies were introduced, but cyber-attack also became a severe problem in cyberspace. Over time, industrial control networks are also forced to join the nodes of the Internet. Therefore, cybersecurity is much more complicated than before, and suffering risk of browsing unknown websites also increases. To practice defenses against cyber-attack effectively, Cyber Range is the best platform to emulate all cyber-attacks and defenses. This article will use VMware virtual machine emulation technology, research cyber range systems under industrial control network architecture, and design and implement an industrial control cyber range system. Using the industrial cyber range to perform vulnerability analyses and exploits on web servers, web applications, and operating systems. The result demonstrates the consequences of the vulnerability attack and raises awareness of cyber security among government, enterprises, education, and other related fields, improving the practical ability to defend against cybersecurity threats.
Lois, Robert S., Cole, Daniel G..  2022.  Designing Secure and Resilient Cyber-Physical Systems Using Formal Models. 2022 Resilience Week (RWS). :1—6.

This work-in-progress paper proposes a design methodology that addresses the complexity and heterogeneity of cyber-physical systems (CPS) while simultaneously proving resilient control logic and security properties. The design methodology involves a formal methods-based approach by translating the complex control logic and security properties of a water flow CPS into timed automata. Timed automata are a formal model that describes system behaviors and properties using mathematics-based logic languages with precision. Due to the semantics that are used in developing the formal models, verification techniques, such as theorem proving and model checking, are used to mathematically prove the specifications and security properties of the CPS. This work-in-progress paper aims to highlight the need for formalizing plant models by creating a timed automata of the physical portions of the water flow CPS. Extending the time automata with control logic, network security, and privacy control processes is investigated. The final model will be formally verified to prove the design specifications of the water flow CPS to ensure efficacy and security.

Zhang, Yue, Nan, Xiaoya, Zhou, Jialing, Wang, Shuai.  2022.  Design of Differential Privacy Protection Algorithms for Cyber-Physical Systems. 2022 International Conference on Intelligent Systems and Computational Intelligence (ICISCI). :29—34.
A new privacy Laplace common recognition algorithm is designed to protect users’ privacy data in this paper. This algorithm disturbs state transitions and information generation functions using exponentially decaying Laplace noise to avoid attacks. The mean square consistency and privacy protection performance are further studied. Finally, the theoretical results obtained are verified by performing numerical simulations.
2023-06-02
Al-Omari, Ahmad, Allhusen, Andrew, Wahbeh, Abdullah, Al-Ramahi, Mohammad, Alsmadi, Izzat.  2022.  Dark Web Analytics: A Comparative Study of Feature Selection and Prediction Algorithms. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :170—175.

The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.

Dalvi, Ashwini, Patil, Gunjan, Bhirud, S G.  2022.  Dark Web Marketplace Monitoring - The Emerging Business Trend of Cybersecurity. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—6.

Cyber threat intelligence (CTI) is vital for enabling effective cybersecurity decisions by providing timely, relevant, and actionable information about emerging threats. Monitoring the dark web to generate CTI is one of the upcoming trends in cybersecurity. As a result, developing CTI capabilities with the dark web investigation is a significant focus for cybersecurity companies like Deepwatch, DarkOwl, SixGill, ThreatConnect, CyLance, ZeroFox, and many others. In addition, the dark web marketplace (DWM) monitoring tools are of much interest to law enforcement agencies (LEAs). The fact that darknet market participants operate anonymously and online transactions are pseudo-anonymous makes it challenging to identify and investigate them. Therefore, keeping up with the DWMs poses significant challenges for LEAs today. Nevertheless, the offerings on the DWM give insights into the dark web economy to LEAs. The present work is one such attempt to describe and analyze dark web market data collected for CTI using a dark web crawler. After processing and labeling, authors have 53 DWMs with their product listings and pricing.

Dalvi, Ashwini, Bhoir, Soham, Siddavatam, Irfan, Bhirud, S G.  2022.  Dark Web Image Classification Using Quantum Convolutional Neural Network. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.

Researchers have investigated the dark web for various purposes and with various approaches. Most of the dark web data investigation focused on analysing text collected from HTML pages of websites hosted on the dark web. In addition, researchers have documented work on dark web image data analysis for a specific domain, such as identifying and analyzing Child Sexual Abusive Material (CSAM) on the dark web. However, image data from dark web marketplace postings and forums could also be helpful in forensic analysis of the dark web investigation.The presented work attempts to conduct image classification on classes other than CSAM. Nevertheless, manually scanning thousands of websites from the dark web for visual evidence of criminal activity is time and resource intensive. Therefore, the proposed work presented the use of quantum computing to classify the images using a Quantum Convolutional Neural Network (QCNN). Authors classified dark web images into four categories alcohol, drugs, devices, and cards. The provided dataset used for work discussed in the paper consists of around 1242 images. The image dataset combines an open source dataset and data collected by authors. The paper discussed the implementation of QCNN and offered related performance measures.

2023-05-26
Coshatt, Stephen J., Li, Qi, Yang, Bowen, Wu, Shushan, Shrivastava, Darpan, Ye, Jin, Song, WenZhan, Zahiri, Feraidoon.  2022.  Design of Cyber-Physical Security Testbed for Multi-Stage Manufacturing System. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1978—1983.
As cyber-physical systems are becoming more wide spread, it is imperative to secure these systems. In the real world these systems produce large amounts of data. However, it is generally impractical to test security techniques on operational cyber-physical systems. Thus, there exists a need to have realistic systems and data for testing security of cyber-physical systems [1]. This is often done in testbeds and cyber ranges. Most cyber ranges and testbeds focus on traditional network systems and few incorporate cyber-physical components. When they do, the cyber-physical components are often simulated. In the systems that incorporate cyber-physical components, generally only the network data is analyzed for attack detection and diagnosis. While there is some study in using physical signals to detect and diagnosis attacks, this data is not incorporated into current testbeds and cyber ranges. This study surveys currents testbeds and cyber ranges and demonstrates a prototype testbed that includes cyber-physical components and sensor data in addition to traditional cyber data monitoring.
2023-05-19
Kraft, Oliver, Pohl, Oliver, Häger, Ulf, Heussen, Kai, Müller, Nils, Afzal, Zeeshan, Ekstedt, Mathias, Farahmand, Hossein, Ivanko, Dmytro, Singh, Ankit et al..  2022.  Development and Implementation of a Holistic Flexibility Market Architecture. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
The demand for increasing flexibility use in power systems is stressed by the changing grid utilization. Making use of largely untapped flexibility potential is possible through novel flexibility markets. Different approaches for these markets are being developed and vary considering their handling of transaction schemes and relation of participating entities. This paper delivers the conceptual development of a holistic system architecture for the realization of an interregional flexibility market, which targets a market based congestion management in the transmission and distribution system through trading between system operators and flexibility providers. The framework combines a market mechanism with the required supplements like appropriate control algorithms for emergency situations, cyber-physical system monitoring and cyber-security assessment. The resulting methods are being implemented and verified in a remote-power-hardware-in-the-loop setup coupling a real world low voltage grid with a geographically distant real time simulation using state of the art control system applications with an integration of the aforementioned architecture components.
Wu, Jingyi, Guo, Jinkang, Lv, Zhihan.  2022.  Deep Learning Driven Security in Digital Twins of Drone Network. ICC 2022 - IEEE International Conference on Communications. :1—6.
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
Zhang, Lingyun, Chen, Yuling, Qian, Xiaobin.  2022.  Data Confirmation Scheme based on Auditable CP-ABE. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :439—443.
Ensuring data rights, openness and transaction flow is important in today’s digital economy. Few scholars have studied in the area of data confirmation, it is only with the development of blockchain that it has started to be taken seriously. However, blockchain has open and transparent natures, so there exists a certain probability of exposing the privacy of data owners. Therefore, in this paper we propose a new measure of data confirmation based on Ciphertext-Policy Attribute-Base Encryption(CP-ABE). The information with unique identification of the data owner is embedded in the ciphertext of CP-ABE by paillier homomorphic encryption, and the data can have multiple sharers. No one has access to the plaintext during the whole confirmation process, which reduces the risk of source data leakage.
2023-05-12
Li, Shushan, Wang, Meng, Zhang, Hong.  2022.  Deadlock Detection for MPI Programs Based on Refined Match-sets. 2022 IEEE International Conference on Cluster Computing (CLUSTER). :82–93.

Deadlock is one of the critical problems in the message passing interface. At present, most techniques for detecting the MPI deadlock issue rely on exhausting all execution paths of a program, which is extremely inefficient. In addition, with the increasing number of wildcards that receive events and processes, the number of execution paths raises exponentially, further worsening the situation. To alleviate the problem, we propose a deadlock detection approach called SAMPI based on match-sets to avoid exploring execution paths. In this approach, a match detection rule is employed to form the rough match-sets based on Lazy Lamport Clocks Protocol. Then we design three refining algorithms based on the non-overtaking rule and MPI communication mechanism to refine the match-sets. Finally, deadlocks are detected by analyzing the refined match-sets. We performed the experimental evaluation on 15 various programs, and the experimental results show that SAMPI is really efficient in detecting deadlocks in MPI programs, especially in handling programs with many interleavings.

ISSN: 2168-9253

Qiu, Zhengyi, Shao, Shudi, Zhao, Qi, Khan, Hassan Ali, Hui, Xinning, Jin, Guoliang.  2022.  A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :744–756.

Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.

ISSN: 2574-3864

Zhang, Qirui, Meng, Siqi, Liu, Kun, Dai, Wei.  2022.  Design of Privacy Mechanism for Cyber Physical Systems: A Nash Q-learning Approach. 2022 China Automation Congress (CAC). :6361–6365.

This paper studies the problem of designing optimal privacy mechanism with less energy cost. The eavesdropper and the defender with limited resources should choose which channel to eavesdrop and defend, respectively. A zero-sum stochastic game framework is used to model the interaction between the two players and the game is solved through the Nash Q-learning approach. A numerical example is given to verify the proposed method.

ISSN: 2688-0938

Jain, Raghav, Saha, Tulika, Chakraborty, Souhitya, Saha, Sriparna.  2022.  Domain Infused Conversational Response Generation for Tutoring based Virtual Agent. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Recent advances in deep learning typically, with the introduction of transformer based models has shown massive improvement and success in many Natural Language Processing (NLP) tasks. One such area which has leveraged immensely is conversational agents or chatbots in open-ended (chit-chat conversations) and task-specific (such as medical or legal dialogue bots etc.) domains. However, in the era of automation, there is still a dearth of works focused on one of the most relevant use cases, i.e., tutoring dialog systems that can help students learn new subjects or topics of their interest. Most of the previous works in this domain are either rule based systems which require a lot of manual efforts or are based on multiple choice type factual questions. In this paper, we propose EDICA (Educational Domain Infused Conversational Agent), a language tutoring Virtual Agent (VA). EDICA employs two mechanisms in order to converse fluently with a student/user over a question and assist them to learn a language: (i) Student/Tutor Intent Classification (SIC-TIC) framework to identify the intent of the student and decide the action of the VA, respectively, in the on-going conversation and (ii) Tutor Response Generation (TRG) framework to generate domain infused and intent/action conditioned tutor responses at every step of the conversation. The VA is able to provide hints, ask questions and correct student's reply by generating an appropriate, informative and relevant tutor response. We establish the superiority of our proposed approach on various evaluation metrics over other baselines and state of the art models.
ISSN: 2161-4407
2023-05-11
Saxena, Aditi, Arora, Akarshi, Saxena, Saumya, Kumar, Ashwni.  2022.  Detection of web attacks using machine learning based URL classification techniques. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–13.
For a long time, online attacks were regarded to pose a severe threat to web - based applications, websites, and clients. It can bypass authentication methods, steal sensitive information from datasets and clients, and also gain ultimate authority of servers. A variety of ways for safeguarding online apps have been developed and used to deal the website risks. Based on the studies about the intersection of cybersecurity and machine learning, countermeasures for identifying typical web assaults have recently been presented (ML). In order to establish a better understanding on this essential topic, it is necessary to study ML methodologies, feature extraction techniques, evaluate datasets, and performance metrics utilised in a systematic manner. In this paper, we go through web security flaws like SQLi, XSS, malicious URLs, phishing attacks, path traversal, and CMDi in detail. We also go through the existing security methods for detecting these threats using machine learning approaches for URL classification. Finally, we discuss potential research opportunities for ML and DL-based techniques in this category, based on a thorough examination of existing solutions in the literature.
Qbea'h, Mohammad, Alrabaee, Saed, Alshraideh, Mohammad, Sabri, Khair Eddin.  2022.  Diverse Approaches Have Been Presented To Mitigate SQL Injection Attack, But It Is Still Alive: A Review. 2022 International Conference on Computer and Applications (ICCA). :1–5.
A huge amount of stored and transferred data is expanding rapidly. Therefore, managing and securing the big volume of diverse applications should have a high priority. However, Structured Query Language Injection Attack (SQLIA) is one of the most common dangerous threats in the world. Therefore, a large number of approaches and models have been presented to mitigate, detect or prevent SQL injection attack but it is still alive. Most of old and current models are created based on static, dynamic, hybrid or machine learning techniques. However, SQL injection attack still represents the highest risk in the trend of web application security risks based on several recent studies in 2021. In this paper, we present a review of the latest research dealing with SQL injection attack and its types, and demonstrating several types of most recent and current techniques, models and approaches which are used in mitigating, detecting or preventing this type of dangerous attack. Then, we explain the weaknesses and highlight the critical points missing in these techniques. As a result, we still need more efforts to make a real, novel and comprehensive solution to be able to cover all kinds of malicious SQL commands. At the end, we provide significant guidelines to follow in order to mitigate such kind of attack, and we strongly believe that these tips will help developers, decision makers, researchers and even governments to innovate solutions in the future research to stop SQLIA.
2023-04-28
Feng, Chunhua.  2022.  Discussion on the Ways of Constructing Computer Network Security in Colleges: Considering Complex Worm Networks. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1650–1653.
This article analyzes the current situation of computer network security in colleges and universities, future development trends, and the relationship between software vulnerabilities and worm outbreaks. After analyzing a server model with buffer overflow vulnerabilities, a worm implementation model based on remote buffer overflow technology is proposed. Complex networks are the medium of worm propagation. By analyzing common complex network evolution models (rule network models, ER random graph model, WS small world network model, BA scale-free network model) and network node characteristics such as extraction degree distribution, single source shortest distance, network cluster coefficient, richness coefficient, and close center coefficient.
Hu, Yuanyuan, Cao, Xiaolong, Li, Guoqing.  2022.  The Design and Realization of Information Security Technology and Computer Quality System Structure. 2022 International Conference on Artificial Intelligence in Everything (AIE). :460–464.
With the development of computer technology and information security technology, computer networks will increasingly become an important means of information exchange, permeating all areas of social life. Therefore, recognizing the vulnerabilities and potential threats of computer networks as well as various security problems that exist in reality, designing and researching computer quality architecture, and ensuring the security of network information are issues that need to be resolved urgently. The purpose of this article is to study the design and realization of information security technology and computer quality system structure. This article first summarizes the basic theory of information security technology, and then extends the core technology of information security. Combining the current status of computer quality system structure, analyzing the existing problems and deficiencies, and using information security technology to design and research the computer quality system structure on this basis. This article systematically expounds the function module data, interconnection structure and routing selection of the computer quality system structure. And use comparative method, observation method and other research methods to design and research the information security technology and computer quality system structure. Experimental research shows that when the load of the computer quality system structure studied this time is 0 or 100, the data loss rate of different lengths is 0, and the correct rate is 100, which shows extremely high feasibility.
Bálint, Krisztián.  2022.  Data Security Structure of a Students’ Attendance Register Based on Security Cameras and Blockchain Technology. 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo). :000185–000190.
The latest, modern security camera systems record numerous data at once. With the utilization of artificial intelligence, these systems can even compose an online attendance register of students present during the lectures. Data is primarily recorded on the hard disk of the NVR (Network Video Recorder), and in the long term, it is recommended to save the data in the blockchain. The purpose of the research is to demonstrate how university security cameras can be securely connected to the blockchain. This would be important for universities as this is sensitive student data that needs to be protected from unauthorized access. In my research, as part of the practical implementation, I therefore also use encryption methods and data fragmentation, which are saved at the nodes of the blockchain. Thus, even a DDoS (Distributed Denial of Service) type attack may be easily repelled, as data is not concentrated on a single, central server. To further increase security, it is useful to constitute a blockchain capable of its own data storage at the faculty itself, rather than renting data storage space, so we, ourselves may regulate the conditions of operation, and the policy of data protection. As a practical part of my research, therefore, I created a blockchain called UEDSC (Universities Data Storage Chain) where I saved the student's data.
ISSN: 2471-9269
Shan, Ziqi, Wang, Yuying, Wei, Shunzhong, Li, Xiangmin, Pang, Haowen, Zhou, Xinmei.  2022.  Docscanner: document location and enhancement based on image segmentation. 2022 18th International Conference on Computational Intelligence and Security (CIS). :98–101.
Document scanning aims to transfer the captured photographs documents into scanned document files. However, current methods based on traditional or key point detection have the problem of low detection accuracy. In this paper, we were the first to propose a document processing system based on semantic segmentation. Our system uses OCRNet to segment documents. Then, perspective transformation and other post-processing algorithms are used to obtain well-scanned documents based on the segmentation result. Meanwhile, we optimized OCRNet's loss function and reached 97.25 MIoU on the test dataset.