Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2023-02-17
Irraivan, Ezilaan, Phang, Swee King.  2022.  Development of a Two-Factor Authentication System for Enhanced Security of Vehicles at a Carpark. 2022 International Conference on Electrical and Information Technology (IEIT). :35–39.
The increasing number of vehicles registered demands for safe and secure carparks due to increase in vehicle theft. The current Automatic Number Plate Recognition (ANPR) systems is a single authentication system and hence it is not secure. Therefore, this research has developed a double authentication system by combing ANPR with a Quick Response (QR) code system to create ANPR-DAS that improves the security at a carpark. It has yielded an accuracy of up to 93% and prevents car theft at a car park.
Babel, Franziska, Baumann, Martin.  2022.  Designing Psychological Conflict Resolution Strategies for Autonomous Service Robots. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :1146–1148.
As autonomous service robots will become increasingly ubiquitous in our daily lives, human-robot conflicts will become more likely when humans and robots share the same spaces and resources. This thesis investigates the conflict resolution of robots and humans in everyday conflicts in the domestic and public context. Hereby, the acceptability, trustworthiness, and effectiveness of verbal and non-verbal strategies for the robot to solve the conflict in its favor are evaluated. Based on the assumption of the Media Equation and CASA paradigm that people interact with computers as social actors, robot conflict resolution strategies from social psychology and human-machine interaction were derived. The effectiveness, acceptability, and trustworthiness of those strategies were evaluated in online, virtual reality, and laboratory experiments. Future work includes determining the psychological processes of human-robot conflict resolution in further experimental studies.
2023-02-13
Zimmermann, Till, Lanfer, Eric, Aschenbruck, Nils.  2022.  Developing a Scalable Network of High-Interaction Threat Intelligence Sensors for IoT Security. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :251—253.

In the last decade, numerous Industrial IoT systems have been deployed. Attack vectors and security solutions for these are an active area of research. However, to the best of our knowledge, only very limited insight in the applicability and real-world comparability of attacks exists. To overcome this widespread problem, we have developed and realized an approach to collect attack traces at a larger scale. An easily deployable system integrates well into existing networks and enables the investigation of attacks on unmodified commercial devices.

2023-02-03
Markelon, Sam A., True, John.  2022.  The DecCert PKI: A Solution to Decentralized Identity Attestation and Zooko’s Triangle. 2022 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :74–82.
We propose DecCert, a decentralized public key infrastructure designed as a smart contract that solves the problem of identity attestation on public blockchains. Our system allows an individual to bind an identity to a public blockchain address. Once a claim of identity is made by an individual, other users can choose to verify the attested identity based on the evidence presented by an identity claim maker by staking cryptocurrency in the DecCert smart contract. Increasing levels of trust are naturally built based upon the amount staked and the duration the collateral is staked for. This mechanism replaces the usual utilization of digital signatures in a traditional hierarchical certificate authority model or the web of trust model to form a publicly verifiable decentralized stake of trust model. We also present a novel solution to the certificate revocation problem and implement our solution on the Ethereum blockchain. Further, we show that our design solves Zooko’s triangle as defined for public key infrastructure deployments.
Sudarsan, Sreelakshmi Vattaparambil, Schelén, Olov, Bodin, Ulf, Nyström, Nicklas.  2022.  Device Onboarding in Eclipse Arrowhead Using Power of Attorney Based Authorization. 2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :26–32.
Large-scale onboarding of industrial cyber physical systems requires efficiency and security. In situations with the dynamic addition of devices (e.g., from subcontractors entering a workplace), automation of the onboarding process is desired. The Eclipse Arrowhead framework, which provides a platform for industrial automation, requires reliable, flexible, and secure device onboarding to local clouds. In this paper, we propose a device onboarding method in the Arrowhead framework where decentralized authorization is provided by Power of Attorney. The model allows users to subgrant power to trusted autonomous devices to act on their behalf. We present concepts, an implementation of the proposed system, and a use case for scalable onboarding where Powers of Attorney at two levels are used to allow a subcontractor to onboard its devices to an industrial site. We also present performance evaluation results.
ISSN: 2378-4873
Shah, Rajeev Kumar, Hasan, Mohammad Kamrul, Islam, Shayla, Khan, Asif, Ghazal, Taher M., Khan, Ahmad Neyaz.  2022.  Detect Phishing Website by Fuzzy Multi-Criteria Decision Making. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–8.
Phishing activity is undertaken by the hackers to compromise the computer networks and financial system. A compromised computer system or network provides data and or processing resources to the world of cybercrime. Cybercrimes are projected to cost the world \$6 trillion by 2021, in this context phishing is expected to continue being a growing challenge. Statistics around phishing growth over the last decade support this theory as phishing numbers enjoy almost an exponential growth over the period. Recent reports on the complexity of the phishing show that the fight against phishing URL as a means of building more resilient cyberspace is an evolving challenge. Compounding the problem is the lack of cyber security expertise to handle the expected rise in incidents. Previous research have proposed different methods including neural network, data mining technique, heuristic-based phishing detection technique, machine learning to detect phishing websites. However, recently phishers have started to use more sophisticated techniques to attack the internet users such as VoIP phishing, spear phishing etc. For these modern methods, the traditional ways of phishing detection provide low accuracy. Hence, the requirement arises for the application and development of modern tools and techniques to use as a countermeasure against such phishing attacks. Keeping in view the nature of recent phishing attacks, it is imperative to develop a state-of-the art anti-phishing tool which should be able to predict the phishing attacks before the occurrence of actual phishing incidents. We have designed such a tool that will work efficiently to detect the phishing websites so that a user can understand easily the risk of using of his personal and financial data.
Patil, Kanchan, Arra, Sai Rohith.  2022.  Detection of Phishing and User Awareness Training in Information Security: A Systematic Literature Review. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:780–786.
Phishing is a method of online fraud where attackers are targeted to gain access to the computer systems for monetary benefits or personal gains. In this case, the attackers pose themselves as legitimate entities to gain the users' sensitive information. Phishing has been significant concern over the past few years. The firms are recording an increase in phishing attacks primarily aimed at the firm's intellectual property and the employees' sensitive data. As a result, these attacks force firms to spend more on information security, both in technology-centric and human-centric approaches. With the advancements in cyber-security in the last ten years, many techniques evolved to detect phishing-related activities through websites and emails. This study focuses on the latest techniques used for detecting phishing attacks, including the usage of Visual selection features, Machine Learning (ML), and Artificial Intelligence (AI) to see the phishing attacks. New strategies for identifying phishing attacks are evolving, but limited standardized knowledge on phishing identification and mitigation is accessible from user awareness training. So, this study also focuses on the role of security-awareness movements to minimize the impact of phishing attacks. There are many approaches to train the user regarding these attacks, such as persona-centred training, anti-phishing techniques, visual discrimination training and the usage of spam filters, robust firewalls and infrastructure, dynamic technical defense mechanisms, use of third-party certified software to mitigate phishing attacks from happening. Therefore, the purpose of this paper is to carry out a systematic analysis of literature to assess the state of knowledge in prominent scientific journals on the identification and prevention of phishing. Forty-three journal articles with the perspective of phishing detection and prevention through awareness training were reviewed from 2011 to 2020. This timely systematic review also focuses on the gaps identified in the selected primary studies and future research directions in this area.
Sicari, Christian, Catalfamo, Alessio, Galletta, Antonino, Villari, Massimo.  2022.  A Distributed Peer to Peer Identity and Access Management for the Osmotic Computing. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :775–781.
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Halisdemir, Maj. Emre, Karacan, Hacer, Pihelgas, Mauno, Lepik, Toomas, Cho, Sungbaek.  2022.  Data Quality Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution Proposal. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:367–383.
Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
ISSN: 2325-5374
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
Roobini, M.S., Srividhya, S.R., Sugnaya, Vennela, Kannekanti, Nikhila, Guntumadugu.  2022.  Detection of SQL Injection Attack Using Adaptive Deep Forest. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Injection attack is one of the best 10 security dangers declared by OWASP. SQL infusion is one of the main types of attack. In light of their assorted and quick nature, SQL injection can detrimentally affect the line, prompting broken and public data on the site. Therefore, this article presents a profound woodland-based technique for recognizing complex SQL attacks. Research shows that the methodology we use resolves the issue of expanding and debasing the first condition of the woodland. We are currently presenting the AdaBoost profound timberland-based calculation, which utilizes a blunder level to refresh the heaviness of everything in the classification. At the end of the day, various loads are given during the studio as per the effect of the outcomes on various things. Our model can change the size of the tree quickly and take care of numerous issues to stay away from issues. The aftereffects of the review show that the proposed technique performs better compared to the old machine preparing strategy and progressed preparing technique.
Hussainy, Abdelrahman S., Khalifa, Mahmoud A., Elsayed, Abdallah, Hussien, Amr, Razek, Mohammed Abdel.  2022.  Deep Learning Toward Preventing Web Attacks. 2022 5th International Conference on Computing and Informatics (ICCI). :280–285.
Cyberattacks are one of the most pressing issues of our time. The impact of cyberthreats can damage various sectors such as business, health care, and governments, so one of the best solutions to deal with these cyberattacks and reduce cybersecurity threats is using Deep Learning. In this paper, we have created an in-depth study model to detect SQL Injection Attacks and Cross-Site Script attacks. We focused on XSS on the Stored-XSS attack type because SQL and Stored-XSS have similar site management methods. The advantage of combining deep learning with cybersecurity in our system is to detect and prevent short-term attacks without human interaction, so our system can reduce and prevent web attacks. This post-training model achieved a more accurate result more than 99% after maintaining the learning level, and 99% of our test data is determined by this model if this input is normal or dangerous.
2023-01-20
Raptis, Theofanis P., Cicconetti, Claudio, Falelakis, Manolis, Kanellos, Tassos, Lobo, Tomás Pariente.  2022.  Design Guidelines for Apache Kafka Driven Data Management and Distribution in Smart Cities. 2022 IEEE International Smart Cities Conference (ISC2). :1–7.
Smart city management is going through a remarkable transition, in terms of quality and diversity of services provided to the end-users. The stakeholders that deliver pervasive applications are now able to address fundamental challenges in the big data value chain, from data acquisition, data analysis and processing, data storage and curation, and data visualisation in real scenarios. Industry 4.0 is pushing this trend forward, demanding for servitization of products and data, also for the smart cities sector where humans, sensors and devices are operating in strict collaboration. The data produced by the ubiquitous devices must be processed quickly to allow the implementation of reactive services such as situational awareness, video surveillance and geo-localization, while always ensuring the safety and privacy of involved citizens. This paper proposes a modular architecture to (i) leverage innovative technologies for data acquisition, management and distribution (such as Apache Kafka and Apache NiFi), (ii) develop a multi-layer engineering solution for revealing valuable and hidden societal knowledge in smart cities environment, and (iii) tackle the main issues in tasks involving complex data flows and provide general guidelines to solve them. We derived some guidelines from an experimental setting performed together with leading industrial technical departments to accomplish an efficient system for monitoring and servitization of smart city assets, with a scalable platform that confirms its usefulness in numerous smart city use cases with different needs.
Omeroglu, Asli Nur, Mohammed, Hussein M. A., Oral, E. Argun, Yucel Ozbek, I..  2022.  Detection of Moving Target Direction for Ground Surveillance Radar Based on Deep Learning. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
In defense and security applications, detection of moving target direction is as important as the target detection and/or target classification. In this study, a methodology for the detection of different mobile targets as approaching or receding was proposed for ground surveillance radar data, and convolutional neural networks (CNN) based on transfer learning were employed for this purpose. In order to improve the classification performance, the use of two key concepts, namely Deep Convolutional Generative Adversarial Network (DCGAN) and decision fusion, has been proposed. With DCGAN, the number of limited available data used for training was increased, thus creating a bigger training dataset with identical distribution to the original data for both moving directions. This generated synthetic data was then used along with the original training data to train three different pre-trained deep convolutional networks. Finally, the classification results obtained from these networks were combined with decision fusion approach. In order to evaluate the performance of the proposed method, publicly available RadEch dataset consisting of eight ground target classes was utilized. Based on the experimental results, it was observed that the combined use of the proposed DCGAN and decision fusion methods increased the detection accuracy of moving target for person, vehicle, group of person and all target groups, by 13.63%, 10.01%, 14.82% and 8.62%, respectively.
Fujii, Shota, Kawaguchi, Nobutaka, Kojima, Shoya, Suzuki, Tomoya, Yamauchi, Toshihiro.  2022.  Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
Qian, Sen, Deng, Hui, Chen, Chuan, Huang, Hui, Liang, Yun, Guo, Jinghong, Hu, Zhengyong, Si, Wenrong, Wang, Hongkang, Li, Yunjia.  2022.  Design of a Nonintrusive Current Sensor with Large Dynamic Range Based on Tunneling Magnetoresistive Devices. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :3405—3409.
Current sensors are widely used in power grid for power metering, automation and power equipment monitoring. Since the tradeoff between the sensitivity and the measurement range needs to be made to design a current sensor, it is difficult to deploy one sensor to measure both the small-magnitude and the large-magnitude current. In this research, we design a surface-mount current sensor by using the tunneling magneto-resistance (TMR) devices and show that the tradeoff between the sensitivity and the detection range can be broken. Two TMR devices of different sensitivity degrees were integrated into one current sensor module, and a signal processing algorithm was implemented to fusion the outputs of the two TMR devices. Then, a platform was setup to test the performance of the surface-mount current sensor. The results showed that the designed current sensor could measure the current from 2 mA to 100 A with an approximate 93 dB dynamic range. Besides, the nonintrusive feature of the surface-mount current sensor could make it convenient to be deployed on-site.
2023-01-13
Ramaj, Xhesika.  2022.  A DevSecOps-enabled Framework for Risk Management of Critical Infrastructures. 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :242–244.
This paper presents a Ph.D. research plan that focuses on solving the existing problems in risk management of critical infrastructures, by means of a novel DevSecOps-enabled framework. Critical infrastructures are complex physical and cyber-based systems that form the lifeline of a modern society, and their reliable and secure operation is of paramount importance to national security and economic vitality. Therefore, this paper proposes DevSecOps technology for managing risk throughout the entire development life cycle of such systems.
Zhang, Xing, Chen, Jiongyi, Feng, Chao, Li, Ruilin, Diao, Wenrui, Zhang, Kehuan, Lei, Jing, Tang, Chaojing.  2022.  Default: Mutual Information-based Crash Triage for Massive Crashes. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :635—646.
With the considerable success achieved by modern fuzzing in-frastructures, more crashes are produced than ever before. To dig out the root cause, rapid and faithful crash triage for large numbers of crashes has always been attractive. However, hindered by the practical difficulty of reducing analysis imprecision without compromising efficiency, this goal has not been accomplished. In this paper, we present an end-to-end crash triage solution Default, for accurately and quickly pinpointing unique root cause from large numbers of crashes. In particular, we quantify the “crash relevance” of program entities based on mutual information, which serves as the criterion of unique crash bucketing and allows us to bucket massive crashes without pre-analyzing their root cause. The quantification of “crash relevance” is also used in the shortening of long crashing traces. On this basis, we use the interpretability of neural networks to precisely pinpoint the root cause in the shortened traces by evaluating each basic block's impact on the crash label. Evaluated with 20 programs with 22216 crashes in total, Default demonstrates remarkable accuracy and performance, which is way beyond what the state-of-the-art techniques can achieve: crash de-duplication was achieved at a super-fast processing speed - 0.017 seconds per crashing trace, without missing any unique bugs. After that, it identifies the root cause of 43 unique crashes with no false negatives and an average false positive rate of 9.2%.
2023-01-06
Zhang, Han, Luo, Xiaoxiao, Li, Yongfu, Sima, Wenxia, Yang, Ming.  2022.  A Digital Twin Based Fault Location Method for Transmission Lines Using the Recovery Information of Instrument Transformers. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
The parameters of transmission line vary with environmental and operating conditions, thus the paper proposes a digital twin-based transmission line model. Based on synchrophasor measurements from phasor measurement units, the proposed model can use the maximum likelihood estimation (MLE) to reduce uncertainty between the digital twin and its physical counterpart. A case study has been conducted in the paper to present the influence of the uncertainty in the measurements on the digital twin for the transmission line and analyze the effectiveness of the MLE method. The results show that the proposed digital twin-based model is effective in reducing the influence of the uncertainty in the measurements and improving the fault location accuracy.
Yu, Xiao, Wang, Dong, Sun, Xiaojuan, Zheng, Bingbing, Du, Yankai.  2022.  Design and Implementation of a Software Disaster Recovery Service for Cloud Computing-Based Aerospace Ground Systems. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :220—225.
The data centers of cloud computing-based aerospace ground systems and the businesses running on them are extremely vulnerable to man-made disasters, emergencies, and other disasters, which means security is seriously threatened. Thus, cloud centers need to provide effective disaster recovery services for software and data. However, the disaster recovery methods for current cloud centers of aerospace ground systems have long been in arrears, and the disaster tolerance and anti-destruction capability are weak. Aiming at the above problems, in this paper we design a disaster recovery service for aerospace ground systems based on cloud computing. On account of the software warehouse, this service adopts the main standby mode to achieve the backup, local disaster recovery, and remote disaster recovery of software and data. As a result, this service can timely response to the disasters, ensure the continuous running of businesses, and improve the disaster tolerance and anti-destruction capability of aerospace ground systems. Extensive simulation experiments validate the effectiveness of the disaster recovery service proposed in this paper.
Erbil, Pinar, Gursoy, M. Emre.  2022.  Detection and Mitigation of Targeted Data Poisoning Attacks in Federated Learning. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1—8.
Federated learning (FL) has emerged as a promising paradigm for distributed training of machine learning models. In FL, several participants train a global model collaboratively by only sharing model parameter updates while keeping their training data local. However, FL was recently shown to be vulnerable to data poisoning attacks, in which malicious participants send parameter updates derived from poisoned training data. In this paper, we focus on defending against targeted data poisoning attacks, where the attacker’s goal is to make the model misbehave for a small subset of classes while the rest of the model is relatively unaffected. To defend against such attacks, we first propose a method called MAPPS for separating malicious updates from benign ones. Using MAPPS, we propose three methods for attack detection: MAPPS + X-Means, MAPPS + VAT, and their Ensemble. Then, we propose an attack mitigation approach in which a "clean" model (i.e., a model that is not negatively impacted by an attack) can be trained despite the existence of a poisoning attempt. We empirically evaluate all of our methods using popular image classification datasets. Results show that we can achieve \textgreater 95% true positive rates while incurring only \textless 2% false positive rate. Furthermore, the clean models that are trained using our proposed methods have accuracy comparable to models trained in an attack-free scenario.
Sharma, Himanshu, Kumar, Neeraj, Tekchandani, Raj Kumar, Mohammad, Nazeeruddin.  2022.  Deep Learning enabled Channel Secrecy Codes for Physical Layer Security of UAVs in 5G and beyond Networks. ICC 2022 - IEEE International Conference on Communications. :1—6.

Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.

Shahjee, Deepesh, Ware, Nilesh.  2022.  Designing a Framework of an Integrated Network and Security Operation Center: A Convergence Approach. 2022 IEEE 7th International conference for Convergence in Technology (I2CT). :1—4.
Cyber-security incidents have grown significantly in modern networks, far more diverse and highly destructive and disruptive. According to the 2021 Cyber Security Statistics Report [1], cybercrime is up 600% during this COVID pandemic, the top attacks are but are not confined to (a) sophisticated phishing emails, (b) account and DNS hijacking, (c) targeted attacks using stealth and air gap malware, (d) distributed denial of services (DDoS), (e) SQL injection. Additionally, 95% of cyber-security breaches result from human error, according to Cybint Report [2]. The average time to identify a breach is 207 days as per Ponemon Institute and IBM, 2022 Cost of Data Breach Report [3]. However, various preventative controls based on cyber-security risk estimation and awareness results decrease most incidents, but not all. Further, any incident detection delay and passive actions to cyber-security incidents put the organizational assets at risk. Therefore, the cyber-security incident management system has become a vital part of the organizational strategy. Thus, the authors propose a framework to converge a "Security Operation Center" (SOC) and a "Network Operations Center" (NOC) in an "Integrated Network Security Operation Center" (INSOC), to overcome cyber-threat detection and mitigation inefficiencies in the near-real-time scenario. We applied the People, Process, Technology, Governance and Compliance (PPTGC) approach to develop the INSOC conceptual framework, according to the requirements we formulated for its operation [4], [5]. The article briefly describes the INSOC conceptual framework and its usefulness, including the central area of the PPTGC approach while designing the framework.
Da Costa, Alessandro Monteiro, de Sá, Alan Oliveira, Machado, Raphael C. S..  2022.  Data Acquisition and extraction on mobile devices-A Review. 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). :294—299.
Forensic Science comprises a set of technical-scientific knowledge used to solve illicit acts. The increasing use of mobile devices as the main computing platform, in particular smartphones, makes existing information valuable for forensics. However, the blocking mechanisms imposed by the manufacturers and the variety of models and technologies make the task of reconstructing the data for analysis challenging. It is worth mentioning that the conclusion of a case requires more than the simple identification of evidence, as it is extremely important to correlate all the data and sources obtained, to confirm a suspicion or to seek new evidence. This work carries out a systematic review of the literature, identifying the different types of existing image acquisition and the main extraction and encryption methods used in smartphones with the Android operating system.
2023-01-05
Li, Yue, Zhang, Yunjuan.  2022.  Design of Smart Risk Assessment System for Agricultural Products and Food Safety Inspection Based on Multivariate Data Analysis. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1206—1210.
Design of smart risk assessment system for the agricultural products and the food safety inspection based on multivariate data analysis is studied in this paper. The designed quality traceability system also requires the collaboration and cooperation of various companies in the supply chain, and a unified database, including agricultural product identification system, code system and security status system, is required to record in detail the trajectory and status of agricultural products in the logistics chain. For the improvement, the multivariate data analysis is combined. Hadoop cannot be used on hardware with high price and high reliability. Even for groups with high probability of the problems, HDFS will continue to use when facing problems, and at the same time. Hence, the core model of HDFS is applied into the system. In the verification part, the analytic performance is simulated.