Visible to the public Biblio

Found 509 results

Filters: First Letter Of Title is N  [Clear All Filters]
2020-03-16
Molyakov, Andrey.  2019.  New security descriptor computing algorithm of Supercomputers. 2019 Third World Conference on Smart Trends in Systems Security and Sustainablity (WorldS4). :349–350.
The author describes computing algorithm based on new scientific definition - “The resulting convolution, which takes into account changes in the significant bits of variables of the Zhegalkin polynomial, is a superposition of hash function calculations for the i-th process”.
White, Ruffin, Caiazza, Gianluca, Jiang, Chenxu, Ou, Xinyue, Yang, Zhiyue, Cortesi, Agostino, Christensen, Henrik.  2019.  Network Reconnaissance and Vulnerability Excavation of Secure DDS Systems. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :57–66.

Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.

Lin, Kuo-Sui.  2019.  A New Evaluation Model for Information Security Risk Management of SCADA Systems. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :757–762.
Supervisory control and data acquisition (SCADA) systems are becoming increasingly susceptible to cyber-physical attacks on both physical and cyber layers of critical information infrastructure. Failure Mode and Effects Analysis (FMEA) have been widely used as a structured method to prioritize all possible vulnerable areas (failure modes) for design review of security of information systems. However, traditional RPN based FMEA has some inherent problems. Besides, there is a lacking of application of FMEA for security in SCADAs under vague and uncertain environment. Thus, the main purpose of this study was to propose a new evaluation model, which not only intends to recover above mentioned problems, but also intends to evaluate, prioritize and correct security risk of SCADA system's threat modes. A numerical case study was also conducted to demonstrate that the proposed new evaluation model is not only capable of addressing FMEA's inherent problems but also is best suited for a semi-quantitative high level analysis of a secure SCADA's failure modes in the early design phases.
2020-03-09
ELMAARADI, Ayoub, LYHYAOUI, Abdelouahid, CHAIRI, IKRAM.  2019.  New security architecture using hybrid IDS for virtual private clouds. 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS). :1–5.

We recently see a real digital revolution where all companies prefer to use cloud computing because of its capability to offer a simplest way to deploy the needed services. However, this digital transformation has generated different security challenges as the privacy vulnerability against cyber-attacks. In this work we will present a new architecture of a hybrid Intrusion detection System, IDS for virtual private clouds, this architecture combines both network-based and host-based intrusion detection system to overcome the limitation of each other, in case the intruder bypassed the Network-based IDS and gained access to a host, in intend to enhance security in private cloud environments. We propose to use a non-traditional mechanism in the conception of the IDS (the detection engine). Machine learning, ML algorithms will can be used to build the IDS in both parts, to detect malicious traffic in the Network-based part as an additional layer for network security, and also detect anomalies in the Host-based part to provide more privacy and confidentiality in the virtual machine. It's not in our scope to train an Artificial Neural Network ”ANN”, but just to propose a new scheme for IDS based ANN, In our future work we will present all the details related to the architecture and parameters of the ANN, as well as the results of some real experiments.

2020-03-02
Ayaida, Marwane, Messai, Nadhir, Wilhelm, Geoffrey, Najeh, Sameh.  2019.  A Novel Sybil Attack Detection Mechanism for C-ITS. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :913–918.

Cooperative Intelligent Transport Systems (C-ITS) are expected to play an important role in our lives. They will improve the traffic safety and bring about a revolution on the driving experience. However, these benefits are counterbalanced by possible attacks that threaten not only the vehicle's security, but also passengers' lives. One of the most common attacks is the Sybil attack, which is even more dangerous than others because it could be the starting point of many other attacks in C-ITS. This paper proposes a distributed approach allowing the detection of Sybil attacks by using the traffic flow theory. The key idea here is that each vehicle will monitor its neighbourhood in order to detect an eventual Sybil attack. This is achieved by a comparison between the real accurate speed of the vehicle and the one estimated using the V2V communications with vehicles in the vicinity. The estimated speed is derived by using the traffic flow fundamental diagram of the road's portion where the vehicles are moving. This detection algorithm is validated through some extensive simulations conducted using the well-known NS3 network simulator with SUMO traffic simulator.

Nag, Soumyajit, Banerjee, Subhasish, Sen, Srijon.  2019.  A New Three Party Authenticated Key Agreement Protocol Which Is Defiant towards Password Guessing Attack. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :13–18.

In order to develop a `common session secret key' though the insecure channel, cryptographic Key Agreement Protocol plays a major role. Many researchers' cryptographic protocol uses smart card as a medium to store transaction secret values. The tampered resistance property of smart card is unable to defend the secret values from side channel attacks. It means a lost smart card is an easy target for any attacker. Though password authentication helps the protocol to give secrecy but on-line as well as off-line password guessing attack can make the protocol vulnerable. The concerned paper manifested key agreement protocol based on three party authenticated key agreement protocol to defend all password related attacks. The security analysis of our paper has proven that the accurate guess of the password of a legitimate user will not help the adversary to generate a common session key.

2020-02-24
van Aubel, Pol, Poll, Erik, Rijneveld, Joost.  2019.  Non-Repudiation and End-to-End Security for Electric-Vehicle Charging. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
In this paper we propose a cryptographic solution that provides non-repudiation and end-to-end security for the electric-vehicle-charging ecosystem as it exists in the Netherlands. It is designed to provide long-term non-repudiation, while allowing for data deletion in order to comply with the GDPR. To achieve this, we use signatures on hashes of individual data fields instead of on the combination of fields directly, and we use Merkle authentication trees to reduce the overhead involved.
Suzuki, Yuhei, Ichikawa, Yuichi, Yamada, Hisato, Ikushima, Kenji.  2019.  Nondestructive evaluation of residual stress through acoustically stimulated electromagnetic response in welded steel. 2019 IEEE International Ultrasonics Symposium (IUS). :1564–1566.
Tensile residual stresses combined with an applied tensile stress can reduce the reliability of steel components. Nondestructive evaluation of residual stress is thus important to avoid unintended fatigue or cracking. Because magnetic hysteresis properties of ferromagnetic materials are sensitive to stress, nondestructive evaluation of residual stress through magnetic properties can be expected. The spatial mapping of local magnetic hysteresis properties becomes possible by using the acoustically stimulated electromagnetic (ASEM) method and the tensile stress dependence of the hysteresis properties has been investigated in steel. It is found that the coercivity Hc and the remanent magnetization signal Vr monotonically decrease with increasing the tensile stress. In this work, we verified the detection of residual stresses through the ASEM response in a welded steel plate. Tensile stresses are intentionally introduced on the opposite side of the partially welded face by controlling welding temperatures. We found that Hc and Vr clearly decrease in the welded region, suggesting that the presence of tensile residual stresses is well detected by the hysteresis parameters.
Li, Baiqiang, Ma, Shaohua, Cai, Zhiyuan, Zheng, Yahong.  2019.  A Novel Method for Calculating Residual Magnetic Flux of DC Contactors. 2019 5th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). :535–538.
Reliable calculation model of electromagnetic mechanism characteristics of DC contactor is of great significance to its structural optimization. In this paper, the excitation process of contactor magnet is summarized, and a new calculation model of hysteresis-finite element method is proposed. It can effectively calculate the remanence of the electromagnetic mechanism under different excitation conditions, and give the relationship curve between the remanence flux and the anti-remanence gap.
2020-02-17
Jyothi, R., Cholli, Nagaraj G..  2019.  New Approach to Secure Cluster Heads in Wireless Sensor Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1097–1101.
This Wireless Sensor Network is a network of devices that communicates the information gathered from a monitored field through wireless links. Small size sensor nodes constitute wireless sensor networks. A Sensor is a device that responds and detects some type of input from both the physical or environmental conditions, such as pressure, heat, light, etc. Applications of wireless sensor networks include home automation, street lighting, military, healthcare and industrial process monitoring. As wireless sensor networks are distributed across large geographical area, these are vulnerable to various security threats. This affects the performance of the wireless sensor networks. The impact of security issues will become more critical if the network is used for mission-critical applications like tactical battlefield. In real life deployment scenarios, the probability of failure of nodes is more. As a result of resource constraints in the sensor nodes, traditional methods which involve large overhead computation and communication are not feasible in WSNs. Hence, design and deployment of secured WSNs is a challenging task. Attacks on WSNs include attack on confidentiality, integrity and availability. There are various types of architectures that are used to deploy WSNs. Some of them are data centric, hierarchical, location based, mobility based etc. This work discusses the security issue of hierarchical architecture and proposes a solution. In hierarchical architectures, sensor nodes are grouped to form clusters. Intra-cluster communication happens through cluster heads. Cluster heads also facilitate inter-cluster communication with other cluster heads. Aggregation of data generated by sensor nodes is done by cluster heads. Aggregated data also get transferred to base through multi-hop approach in most cases. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. The proposed solution identifies attacked cluster head and changes the CH by identifying the fittest node using genetic algorithm based search.
2020-02-10
Pan, Yuyang, Yin, Yanzhao, Zhao, Yulin, Wu, Liji, Zhang, Xiangmin.  2019.  A New Information Extractor for Profiled DPA and Implementation of High Order Masking Circuit. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :258–262.
Profiled DPA is a new method combined with machine learning method in side channel attack which is put forward by Whitnall in CHES 2015.[1]The most important part lies in effectiveness of extracting information. This paper introduces a new rule Explained Local Variance (ELV) to extract information in profiled stage for profiled DPA. It attracts information effectively and shields noise to get better accuracy than the original rule. The ELV enables an attacker to use less power traces to get the same result as before. It also leads to 94.6% space reduction and 29.2% time reduction for calculation. For security circuit implementation, a high order masking scheme in modelsim is implemented. A new exchange network is put forward. 96.9% hardware resource is saved due to the usage of this network.
Tsai, I-Chun, Zhong, Yi, Liu, Fang-Ru, Feng, Jianhua.  2019.  A Novel Security Assessment Method Based on Linear Regression for Logic Locking. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). :1–3.
This paper presents a novel logic locking security assessment method based on linear regression, by means of modeling between the distribution probabilities of key-inputs and observable outputs. The algorithm reveals a weakness of the encrypted circuit since the assessment can revoke the key-inputs within several iterations. The experiment result shows that the proposed assessment can be applied to varies of encrypted combinational benchmark circuits, which exceeds 85% of correctness after revoking the encrypted key-inputs.
Kö\v g\c ce, Mustafa, \c Si\c seci, Necati Ersen.  2019.  A New Approach to Security of N TP via SSL Certificates. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1–5.

The Time and the Time Synchronization are veryimportant especially for the computer networks performing timesensitive operations. It is very important for all the datacenters, markets, finance companies, industrial networks, commercial applications, e-mail and communication-related Clients and servers, active directory services, authentication mechanisms, and wired and wireless communication. For instance. a sensitive time system is crucial for financial networks processing a large amount of data on a daily basis. If the computer does not communicate with other Computers Or Other systems using time, then the time information might not be important. The NTP acts as a Single time source in order to synchronize all the devices in a network. While the computer networks communicate with each other between different time zones and different locations on the earth; the main time doesn't need to be the same all around the world but it must be very sensitive otherwise the networks at different locations might work on different times.As the main time sources, most of networks uses the Coordinated Universal Time The is important also for security. The hackers and the malware such as computer Viruses use the time inconsistencies in order to overcome all the security measures such as firewalls or antivirus software; without a correct time, any system might be taken under control. If all the devices are connected to STP time. then it would be more difficult for malicious to the System.

2020-01-28
Xuan, Shichang, Wang, Huanhong, Gao, Duo, Chung, Ilyong, Wang, Wei, Yang, Wu.  2019.  Network Penetration Identification Method Based on Interactive Behavior Analysis. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :210–215.

The Internet has gradually penetrated into the national economy, politics, culture, military, education and other fields. Due to its openness, interconnectivity and other characteristics, the Internet is vulnerable to all kinds of malicious attacks. The research uses a honeynet to collect attacker information, and proposes a network penetration recognition technology based on interactive behavior analysis. Using Sebek technology to capture the attacker's keystroke record, time series modeling of the keystroke sequences of the interaction behavior is proposed, using a Recurrent Neural Network. The attack recognition method is constructed by using Long Short-Term Memory that solves the problem of gradient disappearance, gradient explosion and long-term memory shortage in ordinary Recurrent Neural Network. Finally, the experiment verifies that the short-short time memory network has a high accuracy rate for the recognition of penetration attacks.

2020-01-27
Shang, Chengya, Bao, Xianqiang, Fu, Lijun, Xia, Li, Xu, Xinghua, Xu, Chengcheng.  2019.  A Novel Key-Value Based Real-Time Data Management Framework for Ship Integrated Power Cyber-Physical System. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :854–858.
The new generation ship integrated power system (IPS) realizes high level informatization for various physical equipments, and gradually develops to a cyber-physical system (CPS). The future trend is collecting ship big data to achieve data-driven intelligence for IPS. However, traditional relational data management framework becomes inefficient to handle the real-time data processing in ship integrated power cyber-physics system. In order to process the large-scale real-time data that collected from numerous sensors by field bus of IPS devices within acceptable latency, especially for handling the semi-structured and non-structured data. This paper proposes a novel key-value data model based real-time data management framework, which enables batch processing and distributed deployment to acquire time-efficiency as well as system scalable. We implement a real-time data management prototype system based on an open source in-memory key-value store. Finally, the evaluation results from the prototype verify the advantages of novel framework compared with traditional solution.
Taher, Kazi Abu, Mohammed Yasin Jisan, Billal, Rahman, Md. Mahbubur.  2019.  Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :643–646.
A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.
Becattini, Federico, Ferracani, Andrea, Principi, Filippo, Ghianni, Marioemanuele, Del Bimbo, Alberto.  2019.  NeuronUnityIntegration2.0. A Unity Based Application for Motion Capture and Gesture Recognition. Proceedings of the 27th ACM International Conference on Multimedia. :2199–2201.
NeuronUnityIntgration2.0 (demo video is avilable at http://tiny.cc/u1lz6y) is a plugin for Unity which provides gesture recognition functionalities through the Perception Neuron motion capture suit. The system offers a recording mode, which guides the user through the collection of a dataset of gestures, and a recognition mode, capable of detecting the recorded actions in real time. Gestures are recognized by training Support Vector Machines directly within our plugin. We demonstrate the effectiveness of our application through an experimental evaluation on a newly collected dataset. Furthermore, external applications can exploit NeuronUnityIntgration2.0's recognition capabilities thanks to a set of exposed API.
2020-01-21
Luckie, Matthew, Beverly, Robert, Koga, Ryan, Keys, Ken, Kroll, Joshua A., claffy, k.  2019.  Network Hygiene, Incentives, and Regulation: Deployment of Source Address Validation in the Internet. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. :465–480.
The Spoofer project has collected data on the deployment and characteristics of IP source address validation on the Internet since 2005. Data from the project comes from participants who install an active probing client that runs in the background. The client automatically runs tests both periodically and when it detects a new network attachment point. We analyze the rich dataset of Spoofer tests in multiple dimensions: across time, networks, autonomous systems, countries, and by Internet protocol version. In our data for the year ending August 2019, at least a quarter of tested ASes did not filter packets with spoofed source addresses leaving their networks. We show that routers performing Network Address Translation do not always filter spoofed packets, as 6.4% of IPv4/24 tested in the year ending August 2019 did not filter. Worse, at least two thirds of tested ASes did not filter packets entering their networks with source addresses claiming to be from within their network that arrived from outside their network. We explore several approaches to encouraging remediation and the challenges of evaluating their impact. While we have been able to remediate 352 IPv4/24, we have found an order of magnitude more IPv4/24 that remains unremediated, despite myriad remediation strategies, with 21% unremediated for more than six months. Our analysis provides the most complete and confident picture of the Internet's susceptibility to date of this long-standing vulnerability. Although there is no simple solution to address the remaining long-tail of unremediated networks, we conclude with a discussion of possible non-technical interventions, and demonstrate how the platform can support evaluation of the impact of such interventions over time.
Yang, Zheng, Lai, Junyu, Sun, Yingbing, Zhou, Jianying.  2019.  A Novel Authenticated Key Agreement Protocol With Dynamic Credential for WSNs. ACM Transactions on Sensor Networks (TOSN). 15:22:1-22:27.
Public key cryptographic primitive (e.g., the famous Diffie-Hellman key agreement, or public key encryption) has recently been used as a standard building block in authenticated key agreement (AKA) constructions for wireless sensor networks (WSNs) to provide perfect forward secrecy (PFS), where the expensive cryptographic operation (i.e., exponentiation calculation) is involved. However, realizing such complex computation on resource-constrained wireless sensors is inefficient and even impossible on some devices. In this work, we introduce a new AKA scheme with PFS for WSNs without using any public key cryptographic primitive. To achieve PFS, we rely on a new dynamic one-time authentication credential that is regularly updated in each session. In particular, each value of the authentication credential is wisely associated with at most one session key that enables us to fulfill the security goal of PFS. Furthermore, the proposed scheme enables the principals to identify whether they have been impersonated previously. We highlight that our scheme can be very efficiently implemented on sensors since only hash function and XOR operation are required.
Chatterjee, Krishnendu, Fu, Hongfei, Goharshady, Amir Kafshdar.  2019.  Non-Polynomial Worst-Case Analysis of Recursive Programs. ACM Transactions on Programming Languages and Systems (TOPLAS). 41:20:1-20:52.
We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of non-recursive programs. First, we apply ranking functions to recursion, resulting in measure functions. We show that measure functions provide a sound and complete approach to prove worst-case bounds of non-deterministic recursive programs. Our second contribution is the synthesis of measure functions in non-polynomial forms. We show that non-polynomial measure functions with logarithm and exponentiation can be synthesized through abstraction of logarithmic or exponentiation terms, Farkas Lemma, and Handelman's Theorem using linear programming. While previous methods obtain polynomial worst-case bounds, our approach can synthesize bounds of various forms including O(n log n) and O(nr), where r is not an integer. We present experimental results to demonstrate that our approach can efficiently obtain worst-case bounds of classical recursive algorithms such as (i) Merge sort, Heap sort, and the divide-and-conquer algorithm for the Closest Pair problem, where we obtain O(n log n) worst-case bound, and (ii) Karatsuba's algorithm for polynomial multiplication and Strassen's algorithm for matrix multiplication, for which we obtain O(nr) bounds such that r is not an integer and is close to the best-known bound for the respective algorithm. Besides the ability to synthesize non-polynomial bounds, we also show that our approach is equally capable of obtaining polynomial worst-case bounds for classical programs such as Quick sort and the dynamic programming algorithm for computing Fibonacci numbers.
Cui, Liqun, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Wu, Yang.  2019.  NSTN: Name-Based Smart Tracking for Network Status in Information-Centric Internet of Things. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Internet of Things(IoT) is an important part of the new generation of information technology and an important stage of development in the era of informatization. As a next generation network, Information Centric Network (ICN) has been introduced into the IoT, leading to the content independence of IC-IoT. To manage the changing network conditions and diagnose the cause of anomalies within it, network operators must obtain and analyze network status information from monitoring tools. However, traditional network supervision method will not be applicable to IC-IoT centered on content rather than IP. Moreover, the surge in information volume will also bring about insufficient information distribution, and the data location in the traditional management information base is fixed and cannot be added or deleted. To overcome these problems, we propose a name-based smart tracking system to store network state information in the IC-IoT. Firstly, we design a new structure of management information base that records various network state information and changes its naming format. Secondly, we use a tracking method to obtain the required network status information. When the manager issues a status request, each data block has a defined data tracking table to record past requests, the location of the status data required can be located according to it. Thirdly, we put forward an adaptive network data location replacement strategy based on the importance of stored data blocks, so that the information with higher importance will be closer to the management center for more efficient acquisition. Simulation results indicate the feasibility of the proposed scheme.
Benmoussa, Ahmed, Tahari, Abdou el Karim, Lagaa, Nasreddine, Lakas, Abderrahmane, Ahmad, Farhan, Hussain, Rasheed, Kerrache, Chaker Abdelaziz, Kurugollu, Fatih.  2019.  A Novel Congestion-Aware Interest Flooding Attacks Detection Mechanism in Named Data Networking. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–6.
Named Data Networking (NDN) is a promising candidate for future internet architecture. It is one of the implementations of the Information-Centric Networking (ICN) architectures where the focus is on the data rather than the owner of the data. While the data security is assured by definition, these networks are susceptible of various Denial of Service (DoS) attacks, mainly Interest Flooding Attacks (IFA). IFAs overwhelm an NDN router with a huge amount of interests (Data requests). Various solutions have been proposed in the literature to mitigate IFAs; however; these solutions do not make a difference between intentional and unintentional misbehavior due to the network congestion. In this paper, we propose a novel congestion-aware IFA detection and mitigation solution. We performed extensive simulations and the results clearly depict the efficiency of our proposal in detecting truly occurring IFA attacks.
2020-01-20
Li, Peisong, Zhang, Ying.  2019.  A Novel Intrusion Detection Method for Internet of Things. 2019 Chinese Control And Decision Conference (CCDC). :4761–4765.

Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.

2020-01-13
Shijia, Yu.  2019.  A New Complex Structural-Acoustic Coupling Response Analysis Method Based On Finite Element-Modal Energy Analysis. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :69–73.
Modal Energy Analysis (MODENA) is a new method which focuses on structural-acoustic coupling problems in recent years. It can predict the energy response of the system quickly and accurately. An algorithm that integrates Finite Element (FE) and MODENA is proposed to solve the structural-acoustic coupling analyses of complex dynamic systems when modes information cannot be solved by analytical ways. The proposed algorithm is applied to a complex structural-acoustic coupling system. Results show that the FE-MODENA method gives a fine estimation to the structural-acoustic response analyses compared with Dual Modal Formulation results, especially when considering multi-point random excitation.
Wang, Xiao-yu, Li, Cong-cong, Wu, Hao-dong, Zhang, De, Zhang, Xiao-dong, Gong, Xun.  2019.  NDE Application of Air-Coupled Transducer for Surface Crack Detection. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
According to the technical difficulties of the air-coupled piezoelectric ultrasonic transducer, 1-3 type piezoelectric composites and double matching layers structure are adopted in order to solve the acoustic impedance mismatch at the interface between the piezoelectric materials and air. The optimal design of the matching layer thickness for double matching layers structure air-coupled ultrasonic transducer is also completed through experiments. Based on this, 440 kHz flat-plate and focused air-coupled piezoelectric ultrasonic transducer are designed, fabricated and characterized. Finally, surface cracks are detected using the focused air-coupled piezoelectric ultrasonic transducer.