Visible to the public Biblio

Found 299 results

Filters: First Letter Of Title is O  [Clear All Filters]
2022-04-18
Shammari, Ayla Al, Maiti, Richard Rabin, Hammer, Bennet.  2021.  Organizational Security Policy and Management during Covid-19. SoutheastCon 2021. :1–4.
Protection of an organization's assets and information technology infrastructure is always crucial to any business. Securing and protecting businesses from cybersecurity threats became very challenging during the Covid-19 Pandemic. Organizations suddenly shifted towards remote work to maintain continuity and protecting against new cyber threats became a big concern for most business owners. This research looks into the following areas (i) outlining the shift from In-person to online work risks (ii) determine the cyber-attack type based on the list of 10 most prominent cybersecurity threats during the Covid-19 Pandemic (iii) and design a security policy to securing business continuity.
2022-03-23
Jena, Prasanta Kumar, Ghosh, Subhojit, Koley, Ebha.  2021.  An Optimal PMU Placement Scheme for Detection of Malicious Attacks in Smart Grid. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—6.

State estimation is the core operation performed within the energy management system (EMS) of smart grid. Hence, the reliability and integrity of a smart grid relies heavily on the performance of sensor measurement dependent state estimation process. The increasing penetration of cyber control into the smart grid operations has raised severe concern for executing a secured state estimation process. The limitation with regard to monitoring large number of sensors allows an intruder to manipulate sensor information, as one of the soft targets for disrupting power system operations. Phasor measurement unit (PMU) can be adopted as an alternative to immunize the state estimation from corrupted conventional sensor measurements. However, the high installation cost of PMUs restricts its installation throughout the network. In this paper a graphical approach is proposed to identify minimum PMU placement locations, so as to detect any intrusion of malicious activity within the smart grid. The high speed synchronized PMU information ensures processing of secured set of sensor measurements to the control center. The results of PMU information based linear state estimation is compared with the conventional non-linear state estimation to detect any attack within the system. The effectiveness of the proposed scheme has been validated on IEEE 14 bus test system.

2022-03-14
Xu, Zixuan, Zhang, Jingci, Ai, Shang, Liang, Chen, Liu, Lu, Li, Yuanzhang.  2021.  Offensive and Defensive Countermeasure Technology of Return-Oriented Programming. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :224–228.
The problem of buffer overflow in the information system is not threatening, and the system's own defense mechanism can detect and terminate code injection attacks. However, as countermeasures compete with each other, advanced stack overflow attacks have emerged: Return Oriented-Programming (ROP) technology, which has become a hot spot in the field of system security research in recent years. First, this article explains the reason for the existence of this technology and the attack principle. Secondly, it systematically expounds the realization of the return-oriented programming technology at home and abroad in recent years from the common architecture platform, the research of attack load construction, and the research of variants based on ROP attacks. Finally, we summarize the paper.
2022-03-08
Wang, Shou-Peng, Dong, Si-Tong, Gao, Yang, Lv, Ke, Jiang, Yu, Zhang, Li-Bin.  2021.  Optimal Solution Discrimination of an Analytic Model for Power Grid Fault Diagnosis Employing Electrical Criterion. 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE). :744–750.
When a fault occurs in power grid, the analytic model for power grid fault diagnosis could generate multiple solutions under one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or one or more their alarm information failing. Hence, this paper, calling the electrical quantities, presents an optimal solution discrimination method, which determines the optimal solution by constructing the electrical criteria of suspicious faulty components. Furthermore, combining the established electrical criteria with the existing analytic model, a hierarchical fault diagnosis mode is proposed. It uses the analytic model for the first level diagnosis based on the switching quantities. Thereafter, aiming at multiple solutions, it applies the electrical criteria for the second level diagnosis to determine the diagnostic result. Finally, the examples of fault diagnosis demonstrate the feasibility and effectiveness of the developed method.
2022-03-02
Li, Fuqiang, Gao, Lisai, Gu, Xiaoqing, Zheng, Baozhou.  2021.  Output-Based Event-Triggered Control of Nonlinear Systems under Deception Attacks. 2021 40th Chinese Control Conference (CCC). :4901–4906.
This paper studies event-triggered output-based security control of nonlinear system under deception attacks obeying a Bernoulli distribution. Firstly, to save system resources of a T-S fuzzy system, an output-based discrete event-triggered mechanism (ETM) is introduced, which excludes Zeno behavior absolutely. Secondly, a closed-loop T-S fuzzy system model is built, which integrates parameters of the nonlinear plant, the ETM, stochastic attacks, fuzzy dynamic output feedback controller and network-induced delays in a unified framework. Thirdly, sufficient conditions for asymptotic stability of the T-S fuzzy sys$łnot$tem are derived, and the design method of a fuzzy output-based security controller is presented. Finally, an example illustrates effectiveness of the proposed method.
2022-02-22
Eisenbarth, Jean-Philippe, Cholez, Thibault, Perrin, Olivier.  2021.  An open measurement dataset on the Bitcoin P2P Network. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :643—647.
The Bitcoin blockchain is managed by an underlying peer-to-peer network. This network is responsible for the propagation of transactions carried out by users via the blocks (which contain the validated transactions), and to ensure consensus between the different nodes. The quality and safety of this network are therefore particularly essential. In this work, we present an open dataset on the peers composing the Bitcoin P2P Network that was made following a well defined and reproducible methodology. We also provide a first analysis of the dataset on three criteria: the number of public nodes and their client version and geographical distribution.
2022-02-10
Shang, Qi.  2020.  ONU Authentication Method Based on POTS Key Matching. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :41–43.
A new ONU authentication method based on POTS key matching is proposed, which makes use of ONU's own FXS resources and connects with a pots phone by dialing the corresponding LOID service key and authentication code that will be sent to ONU. The key combined with LOID service key and authentication code received by ONU will be filtered and then the LOID authentication code is obtained, which is put to match with DigitMap preset into the database of ONU. The LOID authentication code will be transmitted to OLT so as to achieve the purpose of ONU authentication and authorization if the match result is successful.
2022-02-09
Deng, Han, Wang, Zhechon, Zhang, Yazhen.  2021.  Overview of Privacy Protection Data Release Anonymity Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :151–156.
The collection of digital information by governments, companies and individuals creates tremendous opportunities for knowledge and information-based decision-making. Driven by mutual benefit and laws and regulations, there is a need for data exchange and publication between all parties. However, data in its original form usually contains sensitive information about individuals and publishing such data would violate personal privacy. Privacy Protection Data Distribution (PPDP) provides methods and tools to release useful information while protecting data privacy. In recent years, PPDP has received extensive attention from the research community, and many solutions have been proposed for different data release scenarios. How to ensure the availability of data under the premise of protecting user privacy is the core problem to be solved in this field. This paper studies the existing achievements of privacy protection data release anonymity technology, focusing on the existing anonymity technology in three aspects of high-dimensional, high-deficiency, and complex relational data, and analyzes and summarizes them.
2022-01-31
Patel, Jatin, Halabi, Talal.  2021.  Optimizing the Performance of Web Applications in Mobile Cloud Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :33—37.
Cloud computing adoption is on the rise. Many organizations have decided to shift their workload to the cloud to benefit from the scalability, resilience, and cost reduction characteristics. Mobile Cloud Computing (MCC) is an emerging computing paradigm that also provides many advantages to mobile users. Mobile devices function on wireless internet connectivity, which entails issues of limited bandwidth and network congestion. Hence, the primary focus of Web applications in MCC is on improving performance by quickly fulfilling customer's requests to improve service satisfaction. This paper investigates a new approach to caching data in these applications using Redis, an in-memory data store, to enhance Quality of Service. We highlight the two implementation approaches of fetching the data of an application either directly from the database or from the cache. Our experimental analysis shows that, based on performance metrics such as response time, throughput, latency, and number of hits, the caching approach achieves better performance by speeding up the data retrieval by up to four times. This improvement is of significant importance in mobile devices considering their limitation of network bandwidth and wireless connectivity.
Yao, Chunxing, Sun, Zhenyao, Xu, Shuai, Zhang, Han, Ren, Guanzhou, Ma, Guangtong.  2021.  Optimal Parameters Design for Model Predictive Control using an Artificial Neural Network Optimized by Genetic Algorithm. 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). :1–6.
Model predictive control (MPC) has become one of the most attractive control techniques due to its outstanding dynamic performance for motor drives. Besides, MPC with constant switching frequency (CSF-MPC) maintains the advantages of MPC as well as constant frequency but the selection of weighting factors in the cost function is difficult for CSF-MPC. Fortunately, the application of artificial neural networks (ANN) can accelerate the selection without any additional computation burden. Therefore, this paper designs a specific artificial neural network optimized by genetic algorithm (GA-ANN) to select the optimal weighting factors of CSF-MPC for permanent magnet synchronous motor (PMSM) drives fed by three-level T-type inverter. The key performance metrics like THD and switching frequencies error (ferr) are extracted from simulation and this data are utilized to train and evaluate GA-ANN. The trained GA-ANN model can automatically and precisely select the optimal weighting factors for minimizing THD and ferr under different working conditions of PMSM. Furthermore, the experimental results demonstrate the validation of GA-ANN and robustness of optimal weighting factors under different torque loads. Accordingly, any arbitrary user-defined working conditions which combine THD and ferr can be defined and the optimum weighting factors can be fast and explicitly determined via the trained GA-ANN model.
2022-01-10
Zhang, Qixin.  2021.  An Overview and Analysis of Hybrid Encryption: The Combination of Symmetric Encryption and Asymmetric Encryption. 2021 2nd International Conference on Computing and Data Science (CDS). :616–622.
In the current scenario, various forms of information are spread everywhere, especially through the Internet. A lot of valuable information is contained in the dissemination, so security issues have always attracted attention. With the emergence of cryptographic algorithms, information security has been further improved. Generally, cryptography encryption is divided into symmetric encryption and asymmetric encryption. Although symmetric encryption has a very fast computation speed and is beneficial to encrypt a large amount of data, the security is not as high as asymmetric encryption. The same pair of keys used in symmetric algorithms leads to security threats. Thus, if the key can be protected, the security could be improved. Using an asymmetric algorithm to protect the key and encrypting the message with a symmetric algorithm would be a good choice. This paper will review security issues in the information transmission and the method of hybrid encryption algorithms that will be widely used in the future. Also, the various characteristics of algorithms in different systems and some typical cases of hybrid encryption will be reviewed and analyzed to showcase the reinforcement by combining algorithms. Hybrid encryption algorithms will improve the security of the transmission without causing more other problems. Additionally, the way how the encryption algorithms combine to strength the security will be discussed with the aid of an example.
2021-12-22
Kim, Jiha, Park, Hyunhee.  2021.  OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on xAI. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :394–398.
The most representative method of deep learning is data-driven learning. These methods are often data-dependent, and lack of data leads to poor learning. There is a GAN method that creates a likely image as a way to solve a problem that lacks data. The GAN determines that the discriminator is fake/real with respect to the image created so that the generator learns. However, overfitting problems when the discriminator becomes overly dependent on the learning data. In this paper, we explain overfitting problem when the discriminator decides to fake/real using xAI. Depending on the area of the described image, it is possible to limit the learning of the discriminator to avoid overfitting. By doing so, the generator can produce similar but more diverse images.
2021-12-20
Wang, Libin, Wang, Huanqing, Liu, Peter Xiaoping.  2021.  Observer-Based Fuzzy Adaptive Command Filtering Finite-Time Control of Stochastic Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :1–6.
The output feedback problem of finite-time command filtering for nonlinear systems with random disturbance is addressed in this paper. This is the first time that command filtering and output feedback are integrated so that a nonlinear system with random disturbance converge rapidly in finite time. The uncertain functions and unmeasured states are estimated by the fuzzy logic system (FLS) and nonlinear state observer, respectively. Based on the adaptive framework, command filtering technology is applied to mitigate the problem of ``term explosion'' inherent in traditional methods, and error compensation mechanism is considered to improve the control performance of the system. The developed output feedback controller ensures the boundedness of all signals in the stochastic system within a finite time, and the convergence residual can converge to a small region. The validity of this scheme is well verified in a numerical example.
Khorasgani, Hamidreza Amini, Maji, Hemanta K., Wang, Mingyuan.  2021.  Optimally-secure Coin-tossing against a Byzantine Adversary. 2021 IEEE International Symposium on Information Theory (ISIT). :2858–2863.
Ben-Or and Linial (1985) introduced the full information model for coin-tossing protocols involving \$n\$ processors with unbounded computational power using a common broadcast channel for all their communications. For most adversarial settings, the characterization of the exact or asymptotically optimal protocols remains open. Furthermore, even for the settings where near-optimal asymptotic constructions are known, the exact constants or poly-logarithmic multiplicative factors involved are not entirely well-understood. This work studies \$n\$-processor coin-tossing protocols where every processor broadcasts an arbitrary-length message once. An adaptive Byzantine adversary, based on the messages broadcast so far, can corrupt \$k=1\$ processor. A bias-\$X\$ coin-tossing protocol outputs 1 with probability \$X\$; otherwise, it outputs 0 with probability (\$1-X\$). A coin-tossing protocol's insecurity is the maximum change in the output distribution (in the statistical distance) that a Byzantine adversary can cause. Our objective is to identify bias-\$X\$ coin-tossing protocols achieving near-optimal minimum insecurity for every \$Xın[0,1]\$. Lichtenstein, Linial, and Saks (1989) studied bias-\$X\$ coin-tossing protocols in this adversarial model where each party broadcasts an independent and uniformly random bit. They proved that the elegant “threshold coin-tossing protocols” are optimal for all \$n\$ and \$k\$. Furthermore, Goldwasser, Kalai, and Park (2015), Kalai, Komargodski, and Raz (2018), and Haitner and Karidi-Heller (2020) prove that \$k=\textbackslashtextbackslashmathcalO(\textbackslashtextbackslashsqrtn \textbackslashtextbackslashcdot \textbackslashtextbackslashmathsfpolylog(n)\$) corruptions suffice to fix the output of any bias-\$X\$ coin-tossing protocol. These results encompass parties who send arbitrary-length messages, and each processor has multiple turns to reveal its entire message. We use an inductive approach to constructing coin-tossing protocols using a potential function as a proxy for measuring any bias-\$X\$ coin-tossing protocol's susceptibility to attacks in our adversarial model. Our technique is inherently constructive and yields protocols that minimize the potential function. It is incidentally the case that the threshold protocols minimize the potential function, even for arbitrary-length messages. We demonstrate that these coin-tossing protocols' insecurity is a 2-approximation of the optimal protocol in our adversarial model. For any other \$Xın[0,1]\$ that threshold protocols cannot realize, we prove that an appropriate (convex) combination of the threshold protocols is a 4-approximation of the optimal protocol. Finally, these results entail new (vertex) isoperimetric inequalities for density-\$X\$ subsets of product spaces of arbitrary-size alphabets.
2021-12-02
Piatkowska, Ewa, Gavriluta, Catalin, Smith, Paul, Andrén, Filip Pröstl.  2020.  Online Reasoning about the Root Causes of Software Rollout Failures in the Smart Grid. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
An essential ingredient of the smart grid is software-based services. Increasingly, software is used to support control strategies and services that are critical to the grid's operation. Therefore, its correct operation is essential. For various reasons, software and its configuration needs to be updated. This update process represents a significant overhead for smart grid operators and failures can result in financial losses and grid instabilities. In this paper, we present a framework for determining the root causes of software rollout failures in the smart grid. It uses distributed sensors that indicate potential issues, such as anomalous grid states and cyber-attacks, and a causal inference engine based on a formalism called evidential networks. The aim of the framework is to support an adaptive approach to software rollouts, ensuring that a campaign completes in a timely and secure manner. The framework is evaluated for a software rollout use-case in a low voltage distribution grid. Experimental results indicate it can successfully discriminate between different root causes of failure, supporting an adaptive rollout strategy.
2021-11-29
Gao, Hongjun, Liu, Youbo, Liu, Zhenyu, Xu, Song, Wang, Renjun, Xiang, Enmin, Yang, Jie, Qi, Mohan, Zhao, Yinbo, Pan, Hongjin et al..  2020.  Optimal Planning of Distribution Network Based on K-Means Clustering. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :2135–2139.
The reform of electricity marketization has bred multiple market agents. In order to maximize the total social benefits on the premise of ensuring the security of the system and taking into account the interests of multiple market agents, a bi-level optimal allocation model of distribution network with multiple agents participating is proposed. The upper level model considers the economic benefits of energy and service providers, which are mainly distributed power investors, energy storage operators and distribution companies. The lower level model considers end-user side economy and actively responds to demand management to ensure the highest user satisfaction. The K-means multi scenario analysis method is used to describe the time series characteristics of wind power, photovoltaic power and load. The particle swarm optimization (PSO) algorithm is used to solve the bi-level model, and IEEE33 node system is used to verify that the model can effectively consider the interests of multiple agents while ensuring the security of the system.
Joo, Seong-Soon, You, Woongsshik, Pyo, Cheol Sig, Kahng, Hyun-Kook.  2020.  An Organizational Structure for the Thing-User Community Formation. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1124–1127.
The special feature of the thing-user centric communication is that thing-users can form a society autonomously and collaborate to solve problems. To share experiences and knowledge, thing-users form, join, and leave communities. The thing-user, who needs a help from other thing-users to accomplish a mission, searches thing-user communities and nominates thing-users of the discovered communities to organize a collaborative work group. Thing-user community should perform autonomously the social construction process and need principles and procedures for the community formation and collaboration within the thing-user communities. This paper defines thing-user communities and proposes an organizational structure for the thing-user community formation.
2021-10-12
Gouk, Henry, Hospedales, Timothy M..  2020.  Optimising Network Architectures for Provable Adversarial Robustness. 2020 Sensor Signal Processing for Defence Conference (SSPD). :1–5.
Existing Lipschitz-based provable defences to adversarial examples only cover the L2 threat model. We introduce the first bound that makes use of Lipschitz continuity to provide a more general guarantee for threat models based on any Lp norm. Additionally, a new strategy is proposed for designing network architectures that exhibit superior provable adversarial robustness over conventional convolutional neural networks. Experiments are conducted to validate our theoretical contributions, show that the assumptions made during the design of our novel architecture hold in practice, and quantify the empirical robustness of several Lipschitz-based adversarial defence methods.
2021-10-04
Zhong, Chiyang, Sakis Meliopoulos, A. P., AlOwaifeer, Maad, Xie, Jiahao, Ilunga, Gad.  2020.  Object-Oriented Security Constrained Quadratic Optimal Power Flow. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Increased penetration of distributed energy resources (DERs) creates challenges in formulating the security constrained optimal power flow (SCOPF) problem as the number of models for these resources proliferate. Specifically, the number of devices with different mathematical models is large and their integration into the SCOPF becomes tedious. Henceforth, a process that seamlessly models and integrates such new devices into the SCOPF problem is needed. We propose an object-oriented modeling approach that leads to the autonomous formation of the SCOPF problem. All device models in the system are cast into a universal syntax. We have also introduced a quadratization method which makes the models consisting of linear and quadratic equations, if nonlinear. We refer to this model as the State and Control Quadratized Device Model (SCQDM). The SCQDM includes a number of equations and a number of inequalities expressing the operating limits of the device. The SCOPF problem is then formed in a seamless manner by operating only on the SCQDM device objects. The SCOPF problem, formed this way, is also quadratic (i.e. consists of linear and quadratic equations), and of the same form and syntax as the SCQDM for an individual device. For this reason, we named it security constrained quadratic optimal power flow (SCQOPF). We solve the SCQOPF problem using a sequential linear programming (SLP) algorithm and compare the results with those obtained from the commercial solver Knitro on the IEEE 57 bus system.
Ghorashi, Seyed Ramin, Zia, Tanveer, Jiang, Yinhao.  2020.  Optimisation of Lightweight Klein Encryption Algorithm With 3 S-box. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1–5.
Internet of Things (IoT) have offered great opportunities for the growth of smart objects in the last decade. Smart devices are deployed in many fields such as smart cities, healthcare and agriculture. One of the applications of IoT is Wireless Sensor Networks (WSN) that require inexpensive and space-economic design for remote sensing and communication capabilities. This, unfortunately, lead to their inherent security vulnerabilities. Lightweight cryptography schemes are designed to counter many attacks in low-powered devices such as the IoT and WSN. These schemes can provide support for data encryption and key management while maintaining some level of efficiency. Most of these block ciphers provide good security. However, due to the complex cryptographic scheme's efficiency and optimisation is an issue. In this work, we focus on a new lightweight encryption scheme called the Klein block cipher. The algorithms of Klein block cipher are analysed for performance and security optimisations. A new algorithm which consists of 3-layer substitute box is proposed to reduce the need for resource consumption but maintain the security.
2021-09-30
Titouna, Chafiq, Na\"ıt-Abdesselam, Farid, Moungla, Hassine.  2020.  An Online Anomaly Detection Approach For Unmanned Aerial Vehicles. 2020 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
A non-predicted and transient malfunctioning of one or multiple unmanned aerial vehicles (UAVs) is something that may happen over a course of their deployment. Therefore, it is very important to have means to detect these events and take actions for ensuring a high level of reliability, security, and safety of the flight for the predefined mission. In this research, we propose algorithms aiming at the detection and isolation of any faulty UAV so that the performance of the UAVs application is kept at its highest level. To this end, we propose the use of Kullback-Leiler Divergence (KLD) and Artificial Neural Network (ANN) to build algorithms that detect and isolate any faulty UAV. The proposed methods are declined in these two directions: (1) we compute a difference between the internal and external data, use KLD to compute dissimilarities, and detect the UAV that transmits erroneous measurements. (2) Then, we identify the faulty UAV using an ANN model to classify the sensed data using the internal sensed data. The proposed approaches are validated using a real dataset, provided by the Air Lab Failure and Anomaly (ALFA) for UAV fault detection research, and show promising performance.
Weber, Iaçanã, Marchezan, Geaninne, Caimi, Luciano, Marcon, César, Moraes, Fernando G..  2020.  Open-Source NoC-Based Many-Core for Evaluating Hardware Trojan Detection Methods. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
In many-cores based on Network-on-Chip (NoC), several applications execute simultaneously, sharing computation, communication and memory resources. This resource sharing leads to security and trust problems. Hardware Trojans (HTs) may steal sensitive information, degrade system performance, and in extreme cases, induce physical damages. Methods available in the literature to prevent attacks include firewalls, denial-of-service detection, dedicated routing algorithms, cryptography, task migration, and secure zones. The goal of this paper is to add an HT in an NoC, able to execute three types of attacks: packet duplication, block applications, and misrouting. The paper qualitatively evaluates the attacks' effect against methods available in the literature, and its effects showed in an NoC-based many-core. The resulting system is an open-source NoC-based many-core for researchers to evaluate new methods against HT attacks.
Yao, Jiaqi, Zhang, Ying, Mao, Zhiming, Li, Sen, Ge, Minghui, Chen, Xin.  2020.  On-line Detection and Localization of DoS Attacks in NoC. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:173–178.
Nowadays, the Network on Chip (NoC) is widely adopted by multi-core System on Chip (SoC) to meet its communication needs. With the gradual popularization of the Internet of Things (IoT), the application of NoC is increasing. Due to its distribution characteristics on the chip, NoC has gradually become the focus of potential security attacks. Denial of service (DoS) is a typical attack and it is caused by malicious intellectual property (IP) core with unnecessary data packets causing communication congestion and performance degradation. In this article, we propose a novel approach to detect DoS attacks on-line based on random forest algorithm, and detect the router where the attack enters the sensitive communication path. This method targets malicious third-party vendors to implant a DoS Hardware Trojan into the NoC. The data set is generated based on the behavior of multi-core routers triggered by normal and Hardware Trojans. The detection accuracy of the proposed scheme is in the range of 93% to 94%.
2021-09-07
Atasever, Süreyya, Öz\c celık, İlker, Sa\u giro\u glu, \c Seref.  2020.  An Overview of Machine Learning Based Approaches in DDoS Detection. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Many detection approaches have been proposed to address growing threat of Distributed Denial of Service (DDoS) attacks on the Internet. The attack detection is the initial step in most of the mitigation systems. This study examined the methods used to detect DDoS attacks with the focus on learning based approaches. These approaches were compared based on their efficiency, operating load and scalability. Finally, it is discussed in details.
2021-08-17
Jin, Kun, Liu, Chaoyue, Xia, Cathy.  2020.  OTDA: a Unsupervised Optimal Transport framework with Discriminant Analysis for Keystroke Inference. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.
Keystroke Inference has been a hot topic since it poses a severe threat to our privacy from typing. Existing learning-based Keystroke Inference suffers the domain adaptation problem because the training data (from attacker) and the test data (from victim) are generally collected in different environments. Recently, Optimal Transport (OT) is applied to address this problem, but suffers the “ground metric” limitation. In this work, we propose a novel method, OTDA, by incorporating Discriminant Analysis into OT through an iterative learning process to address the ground metric limitation. By embedding OTDA into a vibration-based Keystroke Inference platform, we conduct extensive studies about domain adaptation with different factors, such as people, keyboard position, etc.. Our experiment results show that OTDA can achieve significant performance improvement on classification accuracy, i.e., outperforming baseline by 15% to 30%, state-of-the-art OT and other domain adaptation methods by 10% to 20%.