Biblio
Filters: First Letter Of Title is P [Clear All Filters]
Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
.
2019. In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
Permissioned Blockchains and Virtual Nodes for Reinforcing Trust Between Aggregators and Prosumers in Energy Demand Response Scenarios. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
.
2019. The advancement and penetration of distributed energy resources (DERs) and renewable energy sources (RES) are transforming legacy energy systems in an attempt to reduce carbon emissions and energy waste. Demand Response (DR) has been identified as a key enabler of integrating these, and other, Smart Grid technologies, while, simultaneously, ensuring grid stability and secure energy supply. The massive deployment of smart meters, IoT devices and DERs dictate the need to move to decentralized, or even localized, DR schemes in the face of the increased scale and complexity of monitoring and coordinating the actors and devices in modern smart grids. Furthermore, there is an inherent need to guarantee interoperability, due to the vast number of, e.g., hardware and software stakeholders, and, more importantly, promote trust and incentivize the participation of customers in DR schemes, if they are to be successfully deployed.In this work, we illustrate the design of an energy system that addresses all of the roadblocks that hinder the large scale deployment of DR services. Our DR framework incorporates modern Smart Grid technologies, such as fog-enabled and IoT devices, DERs and RES to, among others, automate asset handling and various time-consuming workflows. To guarantee interoperability, our system employs OpenADR, which standardizes the communication of DR signals among energy stakeholders. Our approach acknowledges the need for decentralization and employs blockchains and smart contracts to deliver a secure, privacy-preserving, tamper-resistant, auditable and reliable DR framework. Blockchains provide the infrastructure to design innovative DR schemes and incentivize active consumer participation as their aforementioned properties promote transparency and trust. In addition, we harness the power of smart contracts which allows us to design and implement fully automated contractual agreements both among involved stakeholders, as well as on a machine-to-machine basis. Smart contracts are digital agents that "live" in the blockchain and can encode, execute and enforce arbitrary agreements. To illustrate the potential and effectiveness of our smart contract-based DR framework, we present a case study that describes the exchange of DR signals and the autonomous instantiation of smart contracts among involved participants to mediate and monitor transactions, enforce contractual clauses, regulate energy supply and handle payments/penalties.
Privacy-Enabled Secure Control of Fog Computing Aided Cyber-Physical Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:509–514.
.
2019. With rapid development of deep integration of computation, control, and communication, Cyber-Physical Systems (CPSs) play an important role in industrial processes. Combined with the technology of fog computing, CPSs can outsource their complicated computation to the fog layer, which in turn, may bring security threats with regard to data privacy. To protect data privacy in a control framework, this paper investigate observer-based secure control problem towards fog computing aided CPSs (FCA-CPSs) by utilizing data perturbation method. Firstly, security inputs are designed to encrypt the transmitted states to realize specific confidentiality level. Then, sufficient conditions are established to ensure the stability of considered FCA-CPSs. Finally, a numerical example is provided to illustrate the effectiveness of the secure estimation scheme.
Preserving Location Privacy in Cyber-Physical Systems. 2019 IEEE Conference on Communications and Network Security (CNS). :1–6.
.
2019. The trending technological research platform is Internet of Things (IoT)and most probably it will stay that way for a while. One of the main application areas of IoT is Cyber-Physical Systems (CPSs), in which IoT devices can be leveraged as actuators and sensors in accordance with the system needs. The public acceptance and adoption of CPS services and applications will create a huge amount of privacy issues related to the processing, storage and disclosure of the user location information. As a remedy, our paper proposes a methodology to provide location privacy for the users of CPSs. Our proposal takes advantage of concepts such as mix-zone, context-awareness, and location-obfuscation. According to our best knowledge, the proposed methodology is the first privacy-preserving location service for CPSs that offers adaptable privacy levels related to the current context of the user.
Privacy in Feedback: The Differentially Private LQG. 2018 Annual American Control Conference (ACC). :3386–3391.
.
2018. Information communicated within cyber-physical systems (CPSs) is often used in determining the physical states of such systems, and malicious adversaries may intercept these communications in order to infer future states of a CPS or its components. Accordingly, there arises a need to protect the state values of a system. Recently, the notion of differential privacy has been used to protect state trajectories in dynamical systems, and it is this notion of privacy that we use here to protect the state trajectories of CPSs. We incorporate a cloud computer to coordinate the agents comprising the CPSs of interest, and the cloud offers the ability to remotely coordinate many agents, rapidly perform computations, and broadcast the results, making it a natural fit for systems with many interacting agents or components. Striving for broad applicability, we solve infinite-horizon linear-quadratic-regulator (LQR) problems, and each agent protects its own state trajectory by adding noise to its states before they are sent to the cloud. The cloud then uses these state values to generate optimal inputs for the agents. As a result, private data are fed into feedback loops at each iteration, and each noisy term affects every future state of every agent. In this paper, we show that the differentially private LQR problem can be related to the well-studied linear-quadratic-Gaussian (LQG) problem, and we provide bounds on how agents' privacy requirements affect the cloud's ability to generate optimal feedback control values for the agents. These results are illustrated in numerical simulations.
Privacy-Preserving Fuzzy Multi-Keyword Search for Multiple Data Owners in Cloud Computing. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :2166–2171.
.
2019. With cloud computing's development, more users are decide to store information on the cloud server. Owing to the cloud server's insecurity, many documents should be encrypted to avoid information leakage before being sent to the cloud. Nevertheless, it leads to the problem that plaintext search techniques can not be directly applied to the ciphertext search. In this case, many searchable encryption schemes based on single data owner model have been proposed. But, the actual situation is that users want to do research with encrypted documents originating from various data owners. This paper puts forward a privacy-preserving scheme that is based on fuzzy multi-keyword search (PPFMKS) for multiple data owners. For the sake of espousing fuzzy multi-keyword and accurate search, secure indexes on the basis of Locality-Sensitive Hashing (LSH) and Bloom Filter (BF)are established. To guarantee the search privacy under multiple data owners model, a new encryption method allowing that different data owners have diverse keys to encrypt files is proposed. This method also solves the high cost caused by inconvenience of key management.
A Privacy-User-Friendly Scheme for Wearable Smart Sensing Devices Based on Blockchain. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :481–486.
.
2018. Wearable smart sensing devices presently become more and more popular in people's daily life, which also brings serious problems related to personal data privacy. In order to provide users better experiences, wearable smart sensing devices are collecting users' personal data all the time and uploading the data to service provider to get computing services, which objectively let service provider master each user's condition and cause a lot of problems such as spam, harassing call, etc. This paper designs a blockchain based scheme to solve such problems by cutting off the association between user identifier and its sensing data from perspective of shielding service providers and adversaries. Firstly, privacy requirements and situations in smart sensing area are reviewed. Then, three key technologies are introduced in the scheme including its theories, purposes and usage. Next, the designed protocol is shown and analyzed in detail. Finally, security analysis and engineering feasibility of the scheme are given. This scheme will give user better experience from privacy protection perspective in smart sensing area.
Privacy-Preserving Data Collection in Context-Aware Applications. 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :75–85.
.
2018. Thanks to the development and popularity of context-aware applications, the quality of users' life has been improved through a wide variety of customized services. Meanwhile, users are suffering severe risk of privacy leakage and their privacy concerns are growing over time. To tackle the contradiction between the serious privacy issues and the growing privacy concerns in context-aware applications, in this paper, we propose a privacy-preserving data collection scheme by incorporating the complicated interactions among user, attacker, and service provider into a three-antithetic-party game. Under such a novel game model, we identify and rigorously prove the best strategies of the three parties and the equilibriums of the games. Furthermore, we evaluate the performance of our proposed data collection game by performing extensive numerical experiments, confirming that the user's data privacy can be effective preserved.
Performance Analysis of Cluster based Secured Key Management Schemes in WSN. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). :944–948.
.
2019. Wireless Sensor Networks (WSNs) utilizes many dedicated sensors for large scale networks in order to record and monitor the conditions over the environment. Cluster-Based Wireless Sensor Networks (CBWSNs) elucidates essential challenges like routing, load balancing, and lifetime of a network and so on. Conversely, security relies a major challenge in CBWSNs by limiting its resources or not forwarding the data to the other clusters. Wireless Sensor Networks utilize different security methods to offer secure information transmission. Encryption of information records transferred into various organizations thus utilizing a very few systems are the normal practices to encourage high information security. For the most part, such encoded data and also the recovery of unique data depend on symmetric or asymmetric key sets. Collectively with the evolution of security advances, unfruitful or unauthorized endeavors have been made by different illicit outsiders to snip the transmitted information and mystery keys deviously, bother the transmission procedure or misshape the transmitted information and keys. Sometimes, the limitations made in the correspondence channel, transmitting and receiving devices might weaken information security and discontinue a critical job to perform. Thus, in this paper we audit the current information security design and key management framework in WSN. Based on this audit and recent security holes, this paper recommends a plausible incorporated answer for secure transmission of information and mystery keys to address these confinements. Thus, consistent and secure clusters is required to guarantee appropriate working of CBWSNs.
Physical Layer Security of a Two-Hop Mixed RF-FSO System in a Cognitive Radio Network. 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC). :167—170.
.
2019. In this paper, the physical layer (PHY)security performance of a dual-hop cooperative relaying in a cognitive-radio system in the presence of an eavesdropper is investigated. The dual-hop transmission is composed of an asymmetric radio frequency (RF)link and a free space optical (FSO)link. In the considered system, an unlicensed secondary user (SU)uses the spectrum which is shared by a licensed primary user (PU)in a controlled manner to keep the interference at PU receiver, below a predefined value. Furthermore, among M available relays, one relay with the best end-to-end signal-to-noise-ratio (SNR)is selected for transmission. It is assumed that all of the RF links follow Rayleigh fading and all of the FSO links follow Gamma-Gamma distribution. Simulations results for some important security metrics, such as the average secrecy capacity (SC), and secrecy outage probability (SOP)are presented, where some practical issues of FSO links such as atmospheric turbulence, and pointing errors are taken into consideration.
Privacy-Preserving Outsourced Speech Recognition for Smart IoT Devices. IEEE Internet of Things Journal. 6:8406–8420.
.
2019. Most of the current intelligent Internet of Things (IoT) products take neural network-based speech recognition as the standard human-machine interaction interface. However, the traditional speech recognition frameworks for smart IoT devices always collect and transmit voice information in the form of plaintext, which may cause the disclosure of user privacy. Due to the wide utilization of speech features as biometric authentication, the privacy leakage can cause immeasurable losses to personal property and privacy. Therefore, in this paper, we propose an outsourced privacy-preserving speech recognition framework (OPSR) for smart IoT devices in the long short-term memory (LSTM) neural network and edge computing. In the framework, a series of additive secret sharing-based interactive protocols between two edge servers are designed to achieve lightweight outsourced computation. And based on the protocols, we implement the neural network training process of LSTM for intelligent IoT device voice control. Finally, combined with the universal composability theory and experiment results, we theoretically prove the correctness and security of our framework.
The Plug-and-Play Electricity Era: Interoperability to Integrate Anything, Anywhere, Anytime. IEEE Power and Energy Magazine. 17:47–58.
.
2019. The inforrmation age continues to transform the mechanics of integrating electric power devices and systems, from coordinated operations based purely on the physics of electric power engineering to an increasing blend of power with information and communication technology. Integrating electric system components is not just about attaching wires. It requires the connection of computer-based automation systems to associated sensing and communication equipment. The architectural impacts are significant. Well-considered and commonly held concepts, principles, and organizational structures continue to emerge to address the complexity of the integrated operational challenges that drive our society to expect more flexibility in configuring the electric power system, while simultaneously achieving greater efficiency, reliability, and resilience. Architectural concepts, such as modularity and composability, contribute to the creation of structures that enable the connection of power system equipment characterized by clearly defined interfaces consisting of physical and cyberlinks. The result of successful electric power system component connection is interoperation: the discipline that drives integration to be simple and reliable.
Performance Analysis of Concatenated Error Correction Code in Secret Key Generation System. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :270–275.
.
2019. Secret key generation from wireless channel is an emerging technique of physical layer security. At present, most of the secret key generation schemes use information reconciliation to obtain symmetric keys. This paper introduces a non-interactive information reconciliation scheme based on channel coding and stream encryption, and considering the error correction capability, we design a concatenated code of BCH and RS codes as channel coding. The performance of concatenated error correction code has been analyzed in this scheme. Then, we compare the concatenated code with first-level error correction code in different test environments. Extensive numerical simulations and experiments demonstrate that the decoding performance of this second-level concatenated code is better than the first-level error correction code, and it can also effectively eliminate third-party eavesdropping.
Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1175—1187.
.
2019. Bitcoin is the leading example of a blockchain application that facilitates peer-to-peer transactions without the need for a trusted intermediary. This paper considers possible attacks related to the decentralized network architecture of Bitcoin. We perform a data driven study of Bitcoin and present possible attacks based on spatial and temporal characteristics of its network. Towards that, we revisit the prior work, dedicated to the study of centralization of Bitcoin nodes over the Internet, through a fine-grained analysis of network distribution, and highlight the increasing centralization of the Bitcoin network over time. As a result, we show that Bitcoin is vulnerable to spatial, temporal, spatio-temporal, and logical partitioning attacks with an increased attack feasibility due to network dynamics. We verify our observations by simulating attack scenarios and the implications of each attack on the Bitcoin . We conclude with suggested countermeasures.
Privacy Against Brute-Force Inference Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :637—641.
.
2019. Privacy-preserving data release is about disclosing information about useful data while retaining the privacy of sensitive data. Assuming that the sensitive data is threatened by a brute-force adversary, we define Guessing Leakage as a measure of privacy, based on the concept of guessing. After investigating the properties of this measure, we derive the optimal utility-privacy trade-off via a linear program with any f-information adopted as the utility measure, and show that the optimal utility is a concave and piece-wise linear function of the privacy-leakage budget.
Parallelization of Brute-Force Attack on MD5 Hash Algorithm on FPGA. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). :88—93.
.
2019. FPGA implementation of MD5 hash algorithm is faster than its software counterpart, but a pre-image brute-force attack on MD5 hash still needs 2ˆ(128) iterations theoretically. This work attempts to improve the speed of the brute-force attack on the MD5 algorithm using hardware implementation. A full 64-stage pipelining is done for MD5 hash generation and three architectures are presented for guess password generation. A 32/34/26-instance parallelization of MD5 hash generator and password generator pair is done to search for a password that was hashed using the MD5 algorithm. Total performance of about 6G trials/second has been achieved using a single Virtex-7 FPGA device.
Privacy-Preserving Deep Learning Computation for Geo-Distributed Medical Big-Data Platforms. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :3–4.
.
2019. This paper proposes a distributed deep learning framework for privacy-preserving medical data training. In order to avoid patients' data leakage in medical platforms, the hidden layers in the deep learning framework are separated and where the first layer is kept in platform and others layers are kept in a centralized server. Whereas keeping the original patients' data in local platforms maintain their privacy, utilizing the server for subsequent layers improves learning performance by using all data from each platform during training.
Privacy-Preserving Deep Learning Models for Law Big Data Feature Learning. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :128–134.
.
2019. Nowadays, a massive number of data, referred as big data, are being collected from social networks and Internet of Things (IoT), which are of tremendous value. Many deep learning-based methods made great progress in the extraction of knowledge of those data. However, the knowledge extraction of the law data poses vast challenges on the deep learning, since the law data usually contain the privacy information. In addition, the amount of law data of an institution is not large enough to well train a deep model. To solve these challenges, some privacy-preserving deep learning are proposed to capture knowledge of privacy data. In this paper, we review the emerging topics of deep learning for the feature learning of the privacy data. Then, we discuss the problems and the future trend in deep learning for privacy-preserving feature learning on law data.
Policy-based Revolutionary Ciphertext-policy Attributes-based Encryption. 2019 International Conference on Advanced Information Technologies (ICAIT). :227–232.
.
2019. Ciphertext-policy Attributes-based Encryption (CP-ABE) is an encouraging cryptographic mechanism. It behaves an access control mechanism for data security. A ciphertext and secret key of user are dependent upon attributes. As a nature of CP-ABE, the data owner defines access policy before encrypting plaintext by his right. Therefore, CP-ABE is suitable in a real environment. In CP-ABE, the revocation issue is demanding since each attribute is shared by many users. A policy-based revolutionary CP-ABE scheme is proposed in this paper. In the proposed scheme, revocation takes place in policy level because a policy consists of threshold attributes and each policy is identified as a unique identity number. Policy revocation means that the data owner updates his policy identity number for ciphertext whenever any attribute is changed in his policy. To be a flexible updating policy control, four types of updating policy levels are identified for the data owner. Authorized user gets a secret key from a trusted authority (TA). TA updates the secret key according to the policy updating level done by the data owner. This paper tests personal health records (PHRs) and analyzes execution times among conventional CP-ABE, other enhanced CP-ABE and the proposed scheme.
PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in low-End Embedded Systems. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
.
2019. Remote Attestation ( RA) is a security service that enables a trusted verifier ( Vrf) to measure current memory state of an untrusted remote prover ( Prv). If correctly implemented, RA allows Vrf to remotely detect if Prv's memory reflects a compromised state. However, RA by itself offers no means of remedying the situation once P rv is determined to be compromised. In this work we show how a secure RA architecture can be extended to enable important and useful security services for low-end embedded devices. In particular, we extend the formally verified RA architecture, VRASED, to implement provably secure software update, erasure, and system-wide resets. When (serially) composed, these features guarantee to Vrf that a remote Prv has been updated to a functional and malware-free state, and was properly initialized after such process. These services are provably secure against an adversary (represented by malware) that compromises Prv and exerts full control of its software state. Our results demonstrate that such services incur minimal additional overhead (0.4% extra hardware footprint, and 100-s milliseconds to generate combined proofs of update, erasure, and reset), making them practical even for the lowest-end embedded devices, e.g., those based on MSP430 or AVR ATMega micro-controller units (MCUs). All changes introduced by our new services to VRASED trusted components are also formally verified.
A Practical Attestation Protocol for Autonomous Embedded Systems. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :263–278.
.
2019. With the recent advent of the Internet of Things (IoT), embedded devices increasingly operate collaboratively in autonomous networks. A key technique to guard the secure and safe operation of connected embedded devices is remote attestation. It allows a third party, the verifier, to ensure the integrity of a remote device, the prover. Unfortunately, existing attestation protocols are impractical when applied in autonomous networks of embedded systems due to their limited scalability, performance, robustness, and security guarantees. In this work, we propose PASTA, a novel attestation protocol that is particularly suited for autonomous embedded systems. PASTA is the first that (i) enables many low-end prover devices to attest their integrity towards many potentially untrustworthy low-end verifier devices, (ii) is fully decentralized, thus, able to withstand network disruptions and arbitrary device outages, and (iii) is in addition to software attacks capable of detecting physical attacks in a much more robust way than any existing protocol. We implemented our protocol, conducted measurements, and simulated large networks. The results show that PASTA is practical on low-end embedded devices, scales to large networks with millions of devices, and improves robustness by multiple orders of magnitude compared with the best existing protocols.
A Probability Prediction Based Mutable Control-Flow Attestation Scheme on Embedded Platforms. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :530–537.
.
2019. Control-flow attacks cause powerful threats to the software integrity. Remote attestation for control flow is a crucial security service for ensuring the software integrity on embedded platforms. The fine-grained remote control-flow attestation with execution-profiling Control-Flow Graph (CFG) is applied to defend against control-flow attacks. It is a safe scheme but it may influence the runtime efficiency. In fact, we find out only the vulnerable parts of a program need being attested at costly fine-grained level to ensure the security, and the remaining normal parts just need a lightweight coarse-grained check to reduce the overhead. We propose Mutable Granularity Control-Flow Attestation (MGC-FA) scheme, which bases on a probabilistic model, to distinguish between the vulnerable and normal parts in the program and combine fine-grained and coarse-grained control-flow attestation schemes. MGC-FA employs the execution-profiling CFG to apply the remote control-flow attestation scheme on embedded devices. MGC-FA is implemented on Raspberry Pi with ARM TrustZone and the experimental results show its effect on balancing the relationship between runtime efficiency and control-flow security.
Privacy-Preserving Authentication Based on Pseudonyms and Secret Sharing for VANET. 2019 Computing, Communications and IoT Applications (ComComAp). :157—162.
.
2019. In this paper, we propose a conditional privacy-preserving authentication scheme based on pseudonyms and (t,n) threshold secret sharing, named CPPT, for vehicular communications. To achieve conditional privacy preservation, our scheme implements anonymous communications based on pseudonyms generated by hash chains. To prevent bad vehicles from conducting framed attacks on honest ones, CPPT introduces Shamir (t,n) threshold secret sharing technique. In addition, through two one-way hash chains, forward security and backward security are guaranteed, and it also optimize the revocation overhead. The size of certificate revocation list (CRL) is only proportional to the number of revoked vehicles and irrelated to how many pseudonymous certificates are held by the revoked vehicles. Extensive simulations demonstrate that CPPT outperforms ECPP, DCS, Hybrid and EMAP schemes in terms of revocation overhead, certificate updating overhead and authentication overhead.
Performance Comparison of Support Vector Machine, K-Nearest-Neighbor, Artificial Neural Networks, and Recurrent Neural networks in Gender Recognition from Voice Signals. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–4.
.
2019. Nowadays, biometric data is the most common used data in the field of security. Audio signals are one of these biometric data. Voice signals have used frequently in cases such as identification, banking systems, and forensic cases solution. The aim of this study is to determine the gender of voice signals. In the study, many different methods were used to determine the gender of voice signals. Firstly, Mel Frequency kepstrum coefficients were used to extract the feature from the audio signal. Subsequently, these attributes were classified with support vector machines, k-nearest neighborhood method and artificial neural networks. At the other stage of the study, it is aimed to determine gender from audio signals without using feature extraction method. For this, recurrent neural networks (RNN) was used. The performance analyzes of the methods used were made and the results were given. The best accuracy, precision, recall, f-score in the study has found to be 87.04%, 86.32%, 88.58%, 87.43% using K-Nearest-Neighbor algorithm.
Protecting Data in Android External Data Storage. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:924–925.
.
2019. Insecure data storage may open a door to malicious malware to steal users' and system sensitive information. These problems may due to developer negligence or lack of security knowledge. Android developers use various storage methods to store data. However, Attackers have attacked these vulnerable data storage. Although the developers have modified the apps after knowing the vulnerability, the user's personal information has been leaked and caused serious consequences. As a result, instead of patching and fixing the vulnerability, we should conduct proactive control for secure Android data storage. In this paper, we analyzed Android external storage vulnerability and discussed the prevention solutions to prevent sensitive information in external storage from disclosure.