Visible to the public Biblio

Found 1171 results

Filters: First Letter Of Title is P  [Clear All Filters]
2021-01-11
Xin, B., Yang, W., Geng, Y., Chen, S., Wang, S., Huang, L..  2020.  Private FL-GAN: Differential Privacy Synthetic Data Generation Based on Federated Learning. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2927–2931.
Generative Adversarial Network (GAN) has already made a big splash in the field of generating realistic "fake" data. However, when data is distributed and data-holders are reluctant to share data for privacy reasons, GAN's training is difficult. To address this issue, we propose private FL-GAN, a differential privacy generative adversarial network model based on federated learning. By strategically combining the Lipschitz limit with the differential privacy sensitivity, the model can generate high-quality synthetic data without sacrificing the privacy of the training data. We theoretically prove that private FL-GAN can provide strict privacy guarantee with differential privacy, and experimentally demonstrate our model can generate satisfactory data.
Whyte, C..  2020.  Problems of Poison: New Paradigms and "Agreed" Competition in the Era of AI-Enabled Cyber Operations. 2020 12th International Conference on Cyber Conflict (CyCon). 1300:215–232.
Few developments seem as poised to alter the characteristics of security in the digital age as the advent of artificial intelligence (AI) technologies. For national defense establishments, the emergence of AI techniques is particularly worrisome, not least because prototype applications already exist. Cyber attacks augmented by AI portend the tailored manipulation of human vectors within the attack surface of important societal systems at great scale, as well as opportunities for calamity resulting from the secondment of technical skill from the hacker to the algorithm. Arguably most important, however, is the fact that AI-enabled cyber campaigns contain great potential for operational obfuscation and strategic misdirection. At the operational level, techniques for piggybacking onto routine activities and for adaptive evasion of security protocols add uncertainty, complicating the defensive mission particularly where adversarial learning tools are employed in offense. Strategically, AI-enabled cyber operations offer distinct attempts to persistently shape the spectrum of cyber contention may be able to pursue conflict outcomes beyond the expected scope of adversary operation. On the other, AI-augmented cyber defenses incorporated into national defense postures are likely to be vulnerable to "poisoning" attacks that predict, manipulate and subvert the functionality of defensive algorithms. This article takes on two primary tasks. First, it considers and categorizes the primary ways in which AI technologies are likely to augment offensive cyber operations, including the shape of cyber activities designed to target AI systems. Then, it frames a discussion of implications for deterrence in cyberspace by referring to the policy of persistent engagement, agreed competition and forward defense promulgated in 2018 by the United States. Here, it is argued that the centrality of cyberspace to the deployment and operation of soon-to-be-ubiquitous AI systems implies new motivations for operation within the domain, complicating numerous assumptions that underlie current approaches. In particular, AI cyber operations pose unique measurement issues for the policy regime.
Chekashev, A., Demianiuk, V., Kogan, K..  2020.  Poster: Novel Opportunities in Design of Efficient Deep Packet Inspection Engines. 2020 IEEE 28th International Conference on Network Protocols (ICNP). :1–2.
Deep Packet Inspection (DPI) is an essential building block implementing various services on data plane [5]. Usually, DPI engines are centered around efficient implementation of regular expressions both from the required memory and lookup time perspectives. In this paper, we explore and generalize original approaches used for packet classifiers [7] to regular expressions. Our preliminary results establish a promising direction for the efficient implementation of DPI engines.
2020-12-28
Menaka, R., Mathana, J. M., Dhanagopal, R., Sundarambal, B..  2020.  Performance Evaluation of DSR Protocol in MANET Untrustworthy Environment. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1049—1052.

In the Mobile Ad hoc Network, the entire nodes taken as routers and contribute transmission when the nodes are not in the range of transmission for the senders. Directing conventions for the ad hoc systems are intended for the indisposed system setting, on the supposition that all the hubs in the system are reliable. Dependability of the directing convention is endangered in the genuine setting as systems are assaulted by pernicious hubs which regularly will in general upset the correspondence. Right now, it is proposed to contemplate the exhibition of the DSR convention under deceitful conditions. Another strategy is proposed to recognize untrue nodes dependent on the RREQ control parcel arrangement.

Makarfi, A. U., Rabie, K. M., Kaiwartya, O., Li, X., Kharel, R..  2020.  Physical Layer Security in Vehicular Networks with Reconfigurable Intelligent Surfaces. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1—6.

This paper studies the physical layer security (PLS) of a vehicular network employing a reconfigurable intelligent surface (RIS). RIS technologies are emerging as an important paradigm for the realisation of smart radio environments, where large numbers of small, low-cost and passive elements, reflect the incident signal with an adjustable phase shift without requiring a dedicated energy source. Inspired by the promising potential of RIS-based transmission, we investigate two vehicular network system models: One with vehicle-to-vehicle communication with the source employing a RIS-based access point, and the other model in the form of a vehicular adhoc network (VANET), with a RIS-based relay deployed on a building. Both models assume the presence of an eavesdropper to investigate the average secrecy capacity of the considered systems. Monte-Carlo simulations are provided throughout to validate the results. The results show that performance of the system in terms of the secrecy capacity is affected by the location of the RIS-relay and the number of RIS cells. The effect of other system parameters such as source power and eavesdropper distances are also studied.

Kumar, R., Mishra, A. K., Singh, D. K..  2020.  Packet Loss Avoidance in Mobile Adhoc Network by using Trusted LDoS Techniques. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—5.
Packet loss detection and prevention is full-size module of MANET protection systems. In trust based approach routing choices are managed with the aid of an unbiased have faith table. Traditional trust-based techniques unsuccessful to notice the essential underlying reasons of a malicious events. AODV is an approachable routing set of guidelines i.e.it finds a supply to an endpoint only on request. LDoS cyber-attacks ship assault statistics packets after period to time in a brief time period. The community multifractal ought to be episodic when LDoS cyber-attacks are hurled unpredictably. Real time programs in MANET necessitate certain QoS advantages, such as marginal end-to-end facts packet interval and unobjectionable records forfeiture. Identification of malevolent machine, information security and impenetrable direction advent in a cell system is a key tasks in any wi-fi network. However, gaining the trust of a node is very challenging, and by what capability it be able to get performed is quiet ambiguous. This paper propose a modern methodology to detect and stop the LDoS attack and preserve innocent from wicked nodes. In this paper an approach which will improve the safety in community by identifying the malicious nodes using improved quality grained packet evaluation method. The approach also multiplied the routing protection using proposed algorithm The structure also accomplish covered direction-finding to defend Adhoc community against malicious node. Experimentally conclusion factor out that device is fine fabulous for confident and more advantageous facts communication.
Chaves, A., Moura, Í, Bernardino, J., Pedrosa, I..  2020.  The privacy paradigm : An overview of privacy in Business Analytics and Big Data. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
In this New Age where information has an indispensable value for companies and data mining technologies are growing in the area of Information Technology, privacy remains a sensitive issue in the approach to the exploitation of the large volume of data generated and processed by companies. The way data is collected, handled and destined is not yet clearly defined and has been the subject of constant debate by several areas of activity. This literature review gives an overview of privacy in the era of Business Analytics and Big Data in different timelines, the opportunities and challenges faced, aiming to broaden discussions on a subject that deserves extreme attention and aims to show that, despite measures for data protection have been created, there is still a need to discuss the subject among the different parties involved in the process to achieve a positive ideal for both users and companies.
Ditton, S., Tekeoglu, A., Bekiroglu, K., Srinivasan, S..  2020.  A Proof of Concept Denial of Service Attack Against Bluetooth IoT Devices. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1—6.
Bluetooth technologies have widespread applications in personal area networks, device-to-device communications and forming ad hoc networks. Studying Bluetooth devices security is a challenging task as they lack support for monitor mode available with other wireless networks (e.g. 802.11 WiFi). In addition, the frequency-hoping spread spectrum technique used in its operation necessitates special hardware and software to study its operation. This investigation examines methods for analyzing Bluetooth devices' security and presents a proof-of-concept DoS attack on the Link Manager Protocol (LMP) layer using the InternalBlue framework. Through this study, we demonstrate a method to study Bluetooth device security using existing tools without requiring specialized hardware. Consequently, the methods proposed in the paper can be used to study Bluetooth security in many applications.
2020-12-21
Padala, S. K., D'Souza, J..  2020.  Performance of Spatially Coupled LDPC Codes over Underwater Acoustic Communication Channel. 2020 National Conference on Communications (NCC). :1–5.
Underwater acoustic (UWA) channel is complex because of its multipath environment, Doppler shift and rapidly changing characteristics. Many of the UWA communication- based applications demand high data rates and reliable communication. The orthogonal frequency division multiplexing (OFDM) system is very effective in UWA channels and provides high data rate with low equalization complexity. It is a challenging task to achieve reliability over these channels. The low-density parity-check (LDPC) codes give a better error performance than turbo codes, for UWA channels. The spatially-coupled low-density parity-check (SC-LDPC) codes have been shown to have the capacity-achieving performance over terrestrial communication. In this paper, we have studied by simulation, the performance of protograph based SC-LDPC codes over shallow water acoustic environment with a communication range of 1000 m and channel bandwidth of 10 KHz. Our results show that SC-LDPC codes give 1 dB performance improvement over LDPC codes at a Bit Error Rate (BER) of 10-3 for the same latency constraints.
Sanila, A., Mahapatra, B., Turuk, A. K..  2020.  Performance Evaluation of RPL protocol in a 6LoWPAN based Smart Home Environment. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
The advancement in technologies like IoT, device-to-device communication lead to concepts like smart home and smart cities, etc. In smart home architecture, different devices such as home appliances, personal computers, surveillance cameras, etc. are connected to the Internet and enable the user to monitor and control irrespective of time and location. IPv6-enabled 6LoWPAN is a low-power, low-range communication protocol designed and developed for the short-range IoT applications. 6LoWPAN is based on IEEE 802.15.4 protocol and IPv6 network protocol for low range wireless applications. Although 6LoWPAN supports different routing protocols, RPL is the widely used routing protocol for low power and lossy networks. In this work, we have taken an IoT enabled smart home environment, in which 6LoWPAN is used as a communication and RPL as a routing protocol. The performance of this proposed network model is analyzed based on the different performance metrics such as latency, PDR, and throughput. The proposed model is simulated using Cooja simulator running over the Contiki OS. Along with the Cooja simulator, the network analyzer tool Wireshark is used to analyze the network behaviors.
Samuel, C., Alvarez, B. M., Ribera, E. Garcia, Ioulianou, P. P., Vassilakis, V. G..  2020.  Performance Evaluation of a Wormhole Detection Method using Round-Trip Times and Hop Counts in RPL-Based 6LoWPAN Networks. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
The IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) has been standardized to support IP over lossy networks. RPL (Routing Protocol for Low-Power and Lossy Networks) is the common routing protocol for 6LoWPAN. Among various attacks on RPL-based networks, the wormhole attack may cause severe network disruption and is one of the hardest to detect. We have designed and implemented in ContikiOS a wormhole detection technique for 6LoWPAN, that uses round-trip times and hop counts. In addition, the performance of this technique has been evaluated in terms of power, CPU, memory, and communication overhead.
2020-12-17
Kumar, R., Sarupria, G., Panwala, V., Shah, S., Shah, N..  2020.  Power Efficient Smart Home with Voice Assistant. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.

The popularity and demand of home automation has increased exponentially in recent years because of the ease it provides. Recently, development has been done in this domain and few systems have been proposed that either use voice assistants or application for controlling the electrical appliances. However; less emphasis is laid on power efficiency and this system cannot be integrated with the existing appliances and hence, the entire system needs to be upgraded adding to a lot of additional cost in purchasing new appliances. In this research, the objective is to design such a system that emphasises on power efficiency as well as can be integrated with the already existing appliances. NodeMCU, along with Raspberry Pi, Firebase realtime database, is used to create a system that accomplishes such endeavours and can control relays, which can control these appliances without the need of replacing them. The experiments in this paper demonstrate triggering of electrical appliances using voice assistant, fire alarm on the basis of flame sensor and temperature sensor. Moreover; use of android application was presented for operating electrical appliances from a remote location. Lastly, the system can be modified by adding security cameras, smart blinds, robot vacuums etc.

Zong, Y., Guo, Y., Chen, X..  2019.  Policy-Based Access Control for Robotic Applications. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :368—3685.

With the wide application of modern robots, more concerns have been raised on security and privacy of robotic systems and applications. Although the Robot Operating System (ROS) is commonly used on different robots, there have been few work considering the security aspects of ROS. As ROS does not employ even the basic permission control mechanism, applications can access any resources without limitation, which could result in equipment damage, harm to human, as well as privacy leakage. In this paper we propose an access control mechanism for ROS based on an extended policy-based access control (PBAC) model. Specifically, we extend ROS to add an additional node dedicated for access control so that it can provide user identity and permission management services. The proposed mechanism also allows the administrator to revoke a permission dynamically. We implemented the proposed method in ROS and demonstrated its applicability and performance through several case studies.

2020-12-15
Li, S., Yu, M., Yang, C.-S., Avestimehr, A. S., Kannan, S., Viswanath, P..  2020.  PolyShard: Coded Sharding Achieves Linearly Scaling Efficiency and Security Simultaneously. 2020 IEEE International Symposium on Information Theory (ISIT). :203—208.
Today's blockchain designs suffer from a trilemma claiming that no blockchain system can simultaneously achieve decentralization, security, and performance scalability. For current blockchain systems, as more nodes join the network, the efficiency of the system (computation, communication, and storage) stays constant at best. A leading idea for enabling blockchains to scale efficiency is the notion of sharding: different subsets of nodes handle different portions of the blockchain, thereby reducing the load for each individual node. However, existing sharding proposals achieve efficiency scaling by compromising on trust - corrupting the nodes in a given shard will lead to the permanent loss of the corresponding portion of data. In this paper, we settle the trilemma by demonstrating a new protocol for coded storage and computation in blockchains. In particular, we propose PolyShard: "polynomially coded sharding" scheme that achieves information-theoretic upper bounds on the efficiency of the storage, system throughput, as well as on trust, thus enabling a truly scalable system.
2020-12-14
Zhou, J.-L., Wang, J.-S., Zhang, Y.-X., Guo, Q.-S., Li, H., Lu, Y.-X..  2020.  Particle Swarm Optimization Algorithm with Variety Inertia Weights to Solve Unequal Area Facility Layout Problem. 2020 Chinese Control And Decision Conference (CCDC). :4240–4245.
The unequal area facility layout problem (UA-FLP) is to place some objects in a specified space according to certain requirements, which is a NP-hard problem in mathematics because of the complexity of its solution, the combination explosion and the complexity of engineering system. Particle swarm optimization (PSO) algorithm is a kind of swarm intelligence algorithm by simulating the predatory behavior of birds. Aiming at the minimization of material handling cost and the maximization of workshop area utilization, the optimization mathematical model of UA-FLPP is established, and it is solved by the particle swarm optimization (PSO) algorithm which simulates the design of birds' predation behavior. The improved PSO algorithm is constructed by using nonlinear inertia weight, dynamic inertia weight and other methods to solve static unequal area facility layout problem. The effectiveness of the proposed method is verified by simulation experiments.
Willcox, G., Rosenberg, L., Burgman, M., Marcoci, A..  2020.  Prioritizing Policy Objectives in Polarized Groups using Artificial Swarm Intelligence. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–9.
Groups often struggle to reach decisions, especially when populations are strongly divided by conflicting views. Traditional methods for collective decision-making involve polling individuals and aggregating results. In recent years, a new method called Artificial Swarm Intelligence (ASI) has been developed that enables networked human groups to deliberate in real-time systems, moderated by artificial intelligence algorithms. While traditional voting methods aggregate input provided by isolated participants, Swarm-based methods enable participants to influence each other and converge on solutions together. In this study we compare the output of traditional methods such as Majority vote and Borda count to the Swarm method on a set of divisive policy issues. We find that the rankings generated using ASI and the Borda Count methods are often rated as significantly more satisfactory than those generated by the Majority vote system (p\textbackslashtextless; 0.05). This result held for both the population that generated the rankings (the “in-group”) and the population that did not (the “out-group”): the in-group ranked the Swarm prioritizations as 9.6% more satisfactory than the Majority prioritizations, while the out-group ranked the Swarm prioritizations as 6.5% more satisfactory than the Majority prioritizations. This effect also held even when the out-group was subject to a demographic sampling bias of 10% (i.e. the out-group was composed of 10% more Labour voters than the in-group). The Swarm method was the only method to be perceived as more satisfactory to the “out-group” than the voting group.
2020-12-11
Ma, X., Sun, X., Cheng, L., Guo, X., Liu, X., Wang, Z..  2019.  Parameter Setting of New Energy Sources Generator Rapid Frequency Response in Northwest Power Grid Based on Multi-Frequency Regulation Resources Coordinated Controlling. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). :218—222.
Since 2016, the northwest power grid has organized new energy sources to participate in the rapid frequency regulation research and carried out pilot test work at the sending end large power grid. The experimental results show that new energy generator has the ability to participate in the grid's rapid frequency regulation, and its performance is better than that of conventional power supply units. This paper analyses the requirements for fast frequency control of the sending end large power grid in northwest China, and proposes the segmented participation indexes of photovoltaic and wind power in the frequency regulation of power grids. In accordance with the idea of "clear responsibilities, various types of unit coordination", the parameter setting of new energy sources rapid frequency regulation is completed based on the coordinated control based on multi-frequency regulation resources in northwest power grid. The new energy fast frequency regulation model was established, through the PSASP power grid stability simulation program and the large-scale power grid stability simulation analysis was completed. The simulation results show that the wind power and photovoltaic adopting differential rapid frequency regulation parameters can better utilize the rapid frequency regulation capability of various types of power sources, realize the coordinated rapid frequency regulation of all types of units, and effectively improve the frequency security prevention and control level of the sending end large power grid.
2020-12-07
More, P. H., Dongre, M. M..  2019.  Partially Predictable Vehicular Ad-hoc Network: Trustworthiness and Security. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). :1–5.
VANET is an emerging technology incorporating ad hoc network to accomplish intelligent communications between vehicles, improvement in road traffic efficiency and safety. In some situations movement of vehicles is in a certain range, over particular distance or just in a specific tendency. Such a network can be called as incompletely or partially predictable network. An efficient use of such network, position and motion of nodes as well as relative history in big data is an open issue in vehicular ad hoc network. A hybrid protocol which provides secure and trustworthiness evaluation based routing can be used in VANET. Here Secure Trustworthiness Evaluation Based Routing Protocol is implemented using NS2 software. Its performance is very good in terms of the Average End to End Delay, Packet Delivery Ratio and Normalized Routing Overhead.
Hamadeh, H., Tyagi, A..  2019.  Physical Unclonable Functions (PUFs) Entangled Trusted Computing Base. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :177–180.
The center-piece of this work is a software measurement physical unclonable function (PUF). It measures processor chip ALU silicon biometrics in a manner similar to all PUFs. Additionally, it composes the silicon measurement with the data-dependent delay of a particular program instruction in a way that is difficult to decompose through a mathematical model. This approach ensures that each software instruction is measured if computed. The SW-PUF measurements bind the execution of software to a specific processor with a corresponding certificate. This makes the SW-PUF a promising candidate for applications requiring Trusted Computing. For instance, it could measure the integrity of an execution path by generating a signature that is unique to the specific program execution path and the processor chip. We present an area and energy-efficient scheme based on the SW-PUF to provide a more robust root of trust for measurement than the existing trusted platform module (TPM). To explore the feasibility of the proposed design, the SW-PUF has been implemented in HSPICE using 45 nm technology and evaluated on the FPGA platform.
2020-12-01
SAADI, C., kandrouch, i, CHAOUI, H..  2019.  Proposed security by IDS-AM in Android system. 2019 5th International Conference on Optimization and Applications (ICOA). :1—7.

Mobile systems are always growing, automatically they need enough resources to secure them. Indeed, traditional techniques for protecting the mobile environment are no longer effective. We need to look for new mechanisms to protect the mobile environment from malicious behavior. In this paper, we examine one of the most popular systems, Android OS. Next, we will propose a distributed architecture based on IDS-AM to detect intrusions by mobile agents (IDS-AM).

2020-11-30
Wang, Y., Huang, F., Hu, Y., Cao, R., Shi, T., Liu, Q., Bi, L., Liu, M..  2018.  Proton Radiation Effects on Y-Doped HfO2-Based Ferroelectric Memory. IEEE Electron Device Letters. 39:823–826.
In this letter, ferroelectric memory performance of TiN/Y-doped-HfO2 (HYO)/TiN capacitors is investigated under proton radiation with 3-MeV energy and different fluence (5e13, 1e14, 5e14, and 1e15 ions/cm2). X-ray diffraction patterns confirm that the orthorhombic phase Pbc21 of HYOfilm has no obvious change after proton radiation. Electrical characterization results demonstrate slight variations of the permittivity and ferroelectric hysteresis loop after proton radiation. The remanent polarization (2Pr) of the capacitor decreases with increasing proton fluence. But the decreasing trend of 2Pr is suppressed under high electric fields. Furthermore, the 2Pr degradation with cycling is abated by proton radiation. These results show that the HYO-based ferroelectric memory is highly resistive to proton radiation, which is potentially useful for space applications.
2020-11-23
Sreekumari, P..  2018.  Privacy-Preserving Keyword Search Schemes over Encrypted Cloud Data: An Extensive Analysis. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :114–120.
Big Data has rapidly developed into a hot research topic in many areas that attracts attention from academia and industry around the world. Many organization demands efficient solution to store, process, analyze and search huge amount of information. With the rapid development of cloud computing, organization prefers cloud storage services to reduce the overhead of storing data locally. However, the security and privacy of big data in cloud computing is a major source of concern. One of the positive ways of protecting data is encrypting it before outsourcing to remote servers, but the encrypted significant amounts of cloud data brings difficulties for the remote servers to perform any keyword search functions without leaking information. Various privacy-preserving keyword search (PPKS) schemes have been proposed to mitigate the privacy issue of big data encrypted on cloud storage. This paper presents an extensive analysis of the existing PPKS techniques in terms of verifiability, efficiency and data privacy. Through this analysis, we present some valuable directions for future work.
2020-11-20
Han, H., Wang, Q., Chen, C..  2019.  Policy Text Analysis Based on Text Mining and Fuzzy Cognitive Map. 2019 15th International Conference on Computational Intelligence and Security (CIS). :142—146.
With the introduction of computer methods, the amount of material and processing accuracy of policy text analysis have been greatly improved. In this paper, Text mining(TM) and latent semantic analysis(LSA) were used to collect policy documents and extract policy elements from them. Fuzzy association rule mining(FARM) technique and partial association test (PA) were used to discover the causal relationships and impact degrees between elements, and a fuzzy cognitive map (FCM) was developed to deduct the evolution of elements through a soft computing method. This non-interventionist approach avoids the validity defects caused by the subjective bias of researchers and provides policy makers with more objective policy suggestions from a neutral perspective. To illustrate the accuracy of this method, this study experimented by taking the state-owned capital layout adjustment related policies as an example, and proved that this method can effectively analyze policy text.
2020-11-09
Göktaş, E., Kollenda, B., Koppe, P., Bosman, E., Portokalidis, G., Holz, T., Bos, H., Giuffrida, C..  2018.  Position-Independent Code Reuse: On the Effectiveness of ASLR in the Absence of Information Disclosure. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :227–242.
Address-space layout randomization is a wellestablished defense against code-reuse attacks. However, it can be completely bypassed by just-in-time code-reuse attacks that rely on information disclosure of code addresses via memory or side-channel exposure. To address this fundamental weakness, much recent research has focused on detecting and mitigating information disclosure. The assumption being that if we perfect such techniques, we will not only maintain layout secrecy but also stop code reuse. In this paper, we demonstrate that an advanced attacker can mount practical code-reuse attacks even in the complete absence of information disclosure. To this end, we present Position-Independent Code-Reuse Attacks, a new class of codereuse attacks relying on the relative rather than absolute location of code gadgets in memory. By means of memory massaging, the attacker first makes the victim program generate a rudimentary ROP payload (for instance, containing code pointers that target instructions "close" to relevant gadgets). Afterwards, the addresses in this payload are patched with small offsets via relative memory writes. To establish the practicality of such attacks, we present multiple Position-Independent ROP exploits against real-world software. After showing that we can bypass ASLR in current systems without requiring information disclosures, we evaluate the impact of our technique on other defenses, such as fine-grained ASLR, multi-variant execution, execute-only memory and re-randomization. We conclude by discussing potential mitigations.
2020-11-04
Zhang, J., Chen, J., Wu, D., Chen, B., Yu, S..  2019.  Poisoning Attack in Federated Learning using Generative Adversarial Nets. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :374—380.

Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.