Biblio
Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.
As AI systems become more ubiquitous, securing them becomes an emerging challenge. Over the years, with the surge in online social media use and the data available for analysis, AI systems have been built to extract, represent and use this information. The credibility of this information extracted from open sources, however, can often be questionable. Malicious or incorrect information can cause a loss of money, reputation, and resources; and in certain situations, pose a threat to human life. In this paper, we use an ensembled semi-supervised approach to determine the credibility of Reddit posts by estimating their reputation score to ensure the validity of information ingested by AI systems. We demonstrate our approach in the cybersecurity domain, where security analysts utilize these systems to determine possible threats by analyzing the data scattered on social media websites, forums, blogs, etc.
The reality of today's computing landscape already suffers from a shortage of cybersecurity professionals, and this gap only expected to grow. We need to generate interest in this STEM topic early in our student's careers and provide teachers the resources they need to succeed in addressing this gap. To address this shortfall we present Practical LAbs in Security for Mobile Applications (PLASMA), a public set of educational security labs to enable instruction in creation of secure Android apps. These labs include example vulnerable applications, information about each vulnerability, steps for how to repair the vulnerabilities, and information about how to confirm that the vulnerability has been properly repaired. Our goal is for instructors to use these activities in their mobile, security, and general computing courses ranging from secondary school to university settings. Another goal of this project is to foster interest in security and computing through demonstrating its importance. Initial feedback demonstrates the labs' positive effects in enhancing student interest in cybersecurity and acclaim from instructors. All project activities may be found on the project website: http://www.TeachingMobileSecurity.com
This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes.
The design of modern computer hardware heavily relies on third-party intellectual property (IP) cores, which may contain malicious hardware Trojans that could be exploited by an adversary to leak secret information or take control of the system. Existing hardware Trojan detection methods either require a golden reference design for comparison or extensive functional testing to identify suspicious signals. In this paper, we propose a new formal verification method to verify the security of hardware designs. The proposed solution formalizes fine grained gate level information flow model for proving security properties of hardware designs in the Coq theorem prover environment. Compare with existing register transfer level (RTL) information flow security models, our model only needs to translate a small number of logic primitives to their formal representations without the need of supporting the rich RTL HDL semantics or dealing with complex conditional branch or loop structures. As a result, a gate level information flow model can be created at much lower complexity while achieving significantly higher precision in modeling the security behavior of hardware designs. We use the AES-T1700 benchmark from Trust-HUB to demonstrate the effectiveness of our solution. Experimental results show that our method can detect and pinpoint the Trojan.
Anti-virus software (AVS) tools are used to detect Malware in a system. However, software-based AVS are vulnerable to attacks. A malicious entity can exploit these vulnerabilities to subvert the AVS. Recently, hardware components such as Hardware Performance Counters (HPC) have been used for Malware detection. In this paper, we propose PREEMPT, a zero overhead, high-accuracy and low-latency technique to detect Malware by re-purposing the embedded trace buffer (ETB), a debug hardware component available in most modern processors. The ETB is used for post-silicon validation and debug and allows us to control and monitor the internal activities of a chip, beyond what is provided by the Input/Output pins. PREEMPT combines these hardware-level observations with machine learning-based classifiers to preempt Malware before it can cause damage. There are many benefits of re-using the ETB for Malware detection. It is difficult to hack into hardware compared to software, and hence, PREEMPT is more robust against attacks than AVS. PREEMPT does not incur performance penalties. Finally, PREEMPT has a high True Positive value of 94% and maintains a low False Positive value of 2%.
In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.
Mobile ad hoc networks present numerous advantages compared to traditional networks. However, due to the fact that they do not have any central management point and are highly dynamic, mobile ad hoc networks display many issues. The one study in this paper is the one related to security. A policy based approach for securing messages dissemination in mobile ad hoc network is proposed in order to tackle that issue.
Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.
Many countries around the world have realized the benefits of the e-government platform in peoples' daily life, and accordingly have already made partial implementations of the key e-government processes. However, before full implementation of all potential services can be made, governments demand the deployment of effective information security measures to ensure secrecy and privacy of their citizens. In this paper, a robust watermarking algorithm is proposed to provide copyright protection for e-government document images. The proposed algorithm utilizes two transforms: the Discrete Wavelet Transformation (DWT) and the Singular Value Decomposition (SVD). Experimental results demonstrate that the proposed e-government document images watermarking algorithm performs considerably well compared to existing relevant algorithms.
Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.
In this paper, we propose a new method for optimizing the deployment of security solutions within an IoT network. Our approach uses dominating sets and centrality metrics to propose an IoT security framework where security functions are optimally deployed among devices. An example of such a solution is presented based on EndToEnd like encryption. The results reveal overall increased security within the network with minimal impact on the traffic.
Smart technologies at hand have facilitated generation and collection of huge volumes of data, on daily basis. It involves highly sensitive and diverse data like personal, organisational, environment, energy, transport and economic data. Data Analytics provide solution for various issues being faced by smart cities like crisis response, disaster resilience, emergence management, smart traffic management system etc.; it requires distribution of sensitive data among various entities within or outside the smart city,. Sharing of sensitive data creates a need for efficient usage of smart city data to provide smart applications and utility to the end users in a trustworthy and safe mode. This shared sensitive data if get leaked as a consequence can cause damage and severe risk to the city's resources. Fortification of critical data from unofficial disclosure is biggest issue for success of any project. Data Leakage Detection provides a set of tools and technology that can efficiently resolves the concerns related to smart city critical data. The paper, showcase an approach to detect the leakage which is caused intentionally or unintentionally. The model represents allotment of data objects between diverse agents using Bigraph. The objective is to make critical data secure by revealing the guilty agent who caused the data leakage.
In this work a platform-aware model-driven engineering process for building component-based embedded software systems using annotated analysis models is described. The process is supported by a framework, called MICOBS, that allows working with different component technologies and integrating different tools that, independently of the component technology, enable the analysis of non-functional properties based on the principles of composability and compositionality. An actor, called Framework Architect, is responsible for this integration. Three other actors take a relevant part in the analysis process. The Component Provider supplies the components, while the Component Tester is in charge of their validation. The latter also feeds MICOBS with the annotated analysis models that characterize the extra-functional properties of the components for the different platforms on which they can be deployed. The Application Architect uses these components to build new systems, performing the trade-off between different alternatives. At this stage, and in order to verify that the final system meets the extra-functional requirements, the Application Architect uses the reports generated by the integrated analysis tools. This process has been used to support the validation and verification of the on-board application software for the Instrument Control Unit of the Energetic Particle Detector of the Solar Orbiter mission.