Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2021-08-05
Alecakir, Huseyin, Kabukcu, Muhammet, Can, Burcu, Sen, Sevil.  2020.  Discovering Inconsistencies between Requested Permissions and Application Metadata by using Deep Learning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :56—56.
Android gives us opportunity to extract meaningful information from metadata. From the security point of view, the missing important information in metadata of an application could be a sign of suspicious application, which could be directed for extensive analysis. Especially the usage of dangerous permissions is expected to be explained in app descriptions. The permission-to-description fidelity problem in the literature aims to discover such inconsistencies between the usage of permissions and descriptions. This study proposes a new method based on natural language processing and recurrent neural networks. The effect of user reviews on finding such inconsistencies is also investigated in addition to application descriptions. The experimental results show that high precision is obtained by the proposed solution, and the proposed method could be used for triage of Android applications.
2021-02-16
Poudel, S., Sun, H., Nikovski, D., Zhang, J..  2020.  Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
2021-08-11
Steinberger, Jessica, Sperotto, Anna, Baier, Harald, Pras, Aiko.  2020.  Distributed DDoS Defense:A collaborative Approach at Internet Scale. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Distributed large-scale cyber attacks targeting the availability of computing and network resources still remain a serious threat. To limit the effects caused by those attacks and to provide a proactive defense, mitigation should move to the networks of Internet Service Providers (ISPs). In this context, this thesis focuses on a development of a collaborative, automated approach to mitigate the effects of Distributed Denial of Service (DDoS) attacks at Internet Scale. This thesis has the following contributions: i) a systematic and multifaceted study on mitigation of large-scale cyber attacks at ISPs. ii) A detailed guidance selecting an exchange format and protocol suitable to use to disseminate threat information. iii) To overcome the shortcomings of missing flow-based interoperability of current exchange formats, a development of the exchange format Flow-based Event Exchange Format (FLEX). iv) A communication process to facilitate the automated defense in response to ongoing network-based attacks, v) a model to select and perform a semi-automatic deployment of suitable response actions. vi) An investigation of the effectiveness of the defense techniques moving-target using Software Defined Networking (SDN) and their applicability in context of large-scale cyber attacks and the networks of ISPs. Finally, a trust model that determines a trust and a knowledge level of a security event to deploy semi-automated remediations and facilitate the dissemination of security event information using the exchange format FLEX in context of ISP networks.
2021-02-16
Zhai, P., Song, Y., Zhu, X., Cao, L., Zhang, J., Yang, C..  2020.  Distributed Denial of Service Defense in Software Defined Network Using OpenFlow. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1274—1279.
Software Defined Network (SDN) is a new type of network architecture solution, and its innovation lies in decoupling traditional network system into a control plane, a data plane, and an application plane. It logically implements centralized control and management of the network, and SDN is considered to represent the development trend of the network in the future. However, SDN still faces many security challenges. Currently, the number of insecure devices is huge. Distributed Denial of Service (DDoS) attacks are one of the major network security threats.This paper focuses on the detection and mitigation of DDoS attacks in SDN. Firstly, we explore a solution to detect DDoS using Renyi entropy, and we use exponentially weighted moving average algorithm to set a dynamic threshold to adapt to changes of the network. Second, to mitigate this threat, we analyze the historical behavior of each source IP address and score it to determine the malicious source IP address, and use OpenFlow protocol to block attack source.The experimental results show that the scheme studied in this paper can effectively detect and mitigate DDoS attacks.
2021-11-30
Alkaeed, Mahdi, Soliman, Md Mohiuddin, Khan, Khaled M., Elfouly, Tarek M..  2020.  Distributed Framework via Block-Chain Smart Contracts for Smart Grid Systems against Cyber-Attacks. 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC). :100–105.
In this century, the demand for energy is increasing daily, and the need for energy resources has become urgent and inevitable. New ways of generating energy, such as renewable resources that depend on many sources, including the sun and wind energy will contribute to the future of humankind largely and effectively. These renewable sources are facing major challenges that cannot be ignored which also require more researches on appropriate solutions . This has led to the emergence of a new type of network user called prosumer, which causes new challenges such as the intermittent nature of renewable. Smart grids have emerged as a solution to integrate these distributed energy sources. It also provides a mechanism to maintain safety and security for power supply networks. The main idea of smart grids is to facilitate local production and consumption By customers and consumers.Distributed ledger technology (DLT) or Block-chain technology has evolved dramatically since 2008 that coincided with the birth of its first application Bitcoin, which is the first cryptocurrency. This innovation led to sparked in the digital revolution, which provides decentralization, security, and democratization of information storage and transfer systems across numerous sectors/industries. Block-chain can be applied for the sake of the durability and safety of energy systems. In this paper, we will propose a new distributed framework that provides protection based on block-chain technology for energy systems to enhance self-defense capability against those cyber-attacks.
2021-02-23
Kumar, M., Singh, A. K..  2020.  Distributed Intrusion Detection System using Blockchain and Cloud Computing Infrastructure. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :248—252.
Intrusion Detection System is a well-known term in the domain of Network and Information Security. It's one of the important components of the Network and Information Security infrastructure. Host Intrusion Detection System (HIDS) helps to detect unauthorized use, abnormal and malicious activities on the host, whereas Network Intrusion Detection System (NIDS) helps to detect attacks and intrusion on networks. Various researchers are actively working on different approaches to improving the IDS performance and many improvements have been achieved. However, development in many other technologies and newly emerging techniques always opens the doors of opportunity to add a sharp edge to IDS and to make it more robust and reliable. This paper proposes the development of Distributed Intrusion Detection System (DIDS) using emerging and promising technologies like Blockchain upon a stable platform like cloud infrastructure.
2021-09-30
Mishra, Rohitshankar, Ahmad, Ishfaq, Sharma, Akshaya.  2020.  A Dynamic Multi-Threaded Queuing Mechanism for Reducing the Inter-Process Communication Latency on Multi-Core Chips. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :12–19.
Reducing latency in inter-process/inter-thread communication is one of the key challenges in parallel and distributed computing. This is because as the number of threads in an application increases, the communication overhead also increases. Moreover, the presence of background load further increases the latency. Reducing communication latency can have a significant impact on multi-threaded application performance in multi-core environments. In a wide-range of applications that utilize queueing mechanism, inter-process/ inter-thread communication typically involves enqueuing and dequeuing. This paper presents a queueing techniques called eLCRQ, which is a lock-free block-when-necessary multi-producer multi-consumer (MPMC) FIFO queue. It is designed for scenarios where the queue can randomly and frequently become empty during runtime. By combining lock-free performance with blocking resource efficiency, it delivers improved performance. Specifically, it results in a 1.7X reduction in latency and a 2.3X reduction in CPU usage when compared to existing message-passing mechanisms including PIPE and Sockets while running on multi-core Linux based systems. The proposed scheme also provides a 3.4X decrease in CPU usage while maintaining comparable latency when compared to other (MPMC) lock-free queues in low load scenarios. Our work is based on open-source Linux and support libraries.
2021-09-16
Alshawi, Amany, Satam, Pratik, Almoualem, Firas, Hariri, Salim.  2020.  Effective Wireless Communication Architecture for Resisting Jamming Attacks. IEEE Access. 8:176691–176703.
Over time, the use of wireless technologies has significantly increased due to bandwidth improvements, cost-effectiveness, and ease of deployment. Owing to the ease of access to the communication medium, wireless communications and technologies are inherently vulnerable to attacks. These attacks include brute force attacks such as jamming attacks and those that target the communication protocol (Wi-Fi and Bluetooth protocols). Thus, there is a need to make wireless communication resilient and secure against attacks. Existing wireless protocols and applications have attempted to address the need to improve systems security as well as privacy. They have been highly effective in addressing privacy issues, but ineffective in addressing security threats like jamming and session hijacking attacks and other types of Denial of Service Attacks. In this article, we present an ``architecture for resilient wireless communications'' based on the concept of Moving Target Defense. To increase the difficulty of launching successful attacks and achieve resilient operation, we changed the runtime characteristics of wireless links, such as the modulation type, network address, packet size, and channel operating frequency. The architecture reduces the overhead resulting from changing channel configurations using two communication channels, in which one is used for communication, while the other acts as a standby channel. A prototype was built using Software Defined Radio to test the performance of the architecture. Experimental evaluations showed that the approach was resilient against jamming attacks. We also present a mathematical analysis to demonstrate the difficulty of performing a successful attack against our proposed architecture.
Conference Name: IEEE Access
2022-02-10
Song, Fuyuan, Qin, Zheng, Zhang, Jixin, Liu, Dongxiao, Liang, Jinwen, Shen, Xuemin Sherman.  2020.  Efficient and Privacy-preserving Outsourced Image Retrieval in Public Clouds. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
With the proliferation of cloud services, cloud-based image retrieval services enable large-scale image outsourcing and ubiquitous image searching. While enjoying the benefits of the cloud-based image retrieval services, critical privacy concerns may arise in such services since they may contain sensitive personal information. In this paper, we propose an efficient and Privacy-Preserving Image Retrieval scheme with Key Switching Technique (PPIRS). PPIRS utilizes the inner product encryption for measuring Euclidean distances between image feature vectors and query vectors in a privacy-preserving manner. Due to the high dimension of the image feature vectors and the large scale of the image databases, traditional secure Euclidean distance comparison methods provide insufficient search efficiency. To prune the search space of image retrieval, PPIRS tailors key switching technique (KST) for reducing the dimension of the encrypted image feature vectors and further achieves low communication overhead. Meanwhile, by introducing locality sensitive hashing (LSH), PPIRS builds efficient searchable indexes for image retrieval by organizing similar images into a bucket. Security analysis shows that the privacy of both outsourced images and queries are guaranteed. Extensive experiments on a real-world dataset demonstrate that PPIRS achieves efficient image retrieval in terms of computational cost.
ISSN: 2576-6813
2021-02-15
Lakshmanan, S. K., Shakkeera, L., Pandimurugan, V..  2020.  Efficient Auto key based Encryption and Decryption using GICK and GDCK methods. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1102–1106.
Security services and share information is provided by the computer network. The computer network is by default there is not security. The Attackers can use this provision to hack and steal private information. Confidentiality, creation, changes, and truthful of data is will be big problems in the network. Many types of research have given many methods regarding this, from these methods Generating Initial Chromosome Key called Generating Dynamic Chromosome Key (GDCK), which is a novel approach. With the help of the RSA (Rivest Shamir Adleman) algorithm, GICK and GDCK have created an initial key. The proposed method has produced new techniques using genetic fitness function for the sender and receiver. The outcome of GICK and GDCK has been verified by NIST (National Institute of Standards Technology) tools and analyzes randomness of auto-generated keys with various methods. The proposed system has involved three examines; it has been yield better P-Values 6.44, 7.05, and 8.05 while comparing existing methods.
2022-02-10
Wu, Bi-Yi, Sheng, Xin-Qing.  2020.  On the efficient evaluation of Sommerfeld integrals over an impedance plane: exact and asymptotic expressions. 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). :9–10.
In this work, the efficient evaluation of Sommerfeld integrals (SIs) above an impedance plane is addressed. Started from Weyl's expression of SIs, using the coordinate transformation and steepest descent path approach, an exact single image representation to SIs is derived. This single image representation image eliminates oscillating and slow-decay integrand in traditional SIs, and efficient to calculate. Moreover, the far-field asymptotic behavior of SIs in this case is considered and is represented by the Fresnel-integral related function. A high-order approximation based on series expansion of Fresnel integral is provided for fast evaluation. Finally, the validity of the proposed expressions is verified by numerical examples.
2021-09-21
Mohanasruthi, V., Chakraborty, Abhishek, Thanudas, B., Sreelal, S., Manoj, B. S..  2020.  An Efficient Malware Detection Technique Using Complex Network-Based Approach. 2020 National Conference on Communications (NCC). :1–6.
System security is becoming an indispensable part of our daily life due to the rapid proliferation of unknown malware attacks. Recent malware found to have a very complicated structure that is hard to detect by the traditional malware detection techniques such as antivirus, intrusion detection systems, and network scanners. In this paper, we propose a complex network-based malware detection technique, Malware Detection using Complex Network (MDCN), that considers Application Program Interface Call Transition Matrix (API-CTM) to generate complex network topology and then extracts various feature set by analyzing different metrics of the complex network to distinguish malware and benign applications. The generated feature set is then sent to several machine learning classifiers, which include naive-Bayes, support vector machine, random forest, and multilayer perceptron, to comparatively analyze the performance of MDCN-based technique. The analysis reveals that MDCN shows higher accuracy, with lower false-positive cases, when the multilayer perceptron-based classifier is used for the detection of malware. MDCN technique can efficiently be deployed in the design of an integrated enterprise network security system.
2021-06-01
Shang, X., Shi, L.N., Niu, J.B., Xie, C.Q..  2020.  Efficient Mie Resonance of Metal-masked Titanium Dioxide Nanopillars. 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). :171—173.
Here, we propose a simple design approach based on metal-masked titanium dioxide nanopillars, which can realize strong Mie resonance in metasurfaces and enables light confinement within itself over the range of visible wavelengths. By selecting the appropriate period and diameter of individual titanium dioxide nanopillars, the coincidence of resonance peak positions derived from excited electric and magnetic dipoles can be achived. And the optical properties in this design have been investigated with the Finite-Difference Time-Domain(FDTD) solutions.
2021-04-08
Shi, S., Li, J., Wu, H., Ren, Y., Zhi, J..  2020.  EFM: An Edge-Computing-Oriented Forwarding Mechanism for Information-Centric Networks. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :154–159.
Information-Centric Networking (ICN) has attracted much attention as a promising future network design, which presents a paradigm shift from host-centric to content-centric. However, in edge computing scenarios, there is still no specific ICN forwarding mechanism to improve transmission performance. In this paper, we propose an edge-oriented forwarding mechanism (EFM) for edge computing scenarios. The rationale is to enable edge nodes smarter, such as acting as agents for both consumers and providers to improve content retrieval and distribution. On the one hand, EFM can assist consumers: the edge router can be used either as a fast content repository to satisfy consumers’ requests or as a smart delegate of consumers to request content from upstream nodes. On the other hand, EFM can assist providers: EFM leverages the optimized in-network recovery/retransmission to detect packet loss or even accelerate the content distribution. The goal of our research is to improve the performance of edge networks. Simulation results based on ndnSIM indicate that EFM can enable efficient content retrieval and distribution, friendly to both consumers and providers.
2021-03-29
Feng, G., Zhang, C., Si, Y., Lang, L..  2020.  An Encryption and Decryption Algorithm Based on Random Dynamic Hash and Bits Scrambling. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). :317–320.
This paper proposes a stream cipher algorithm. Its main principle is conducting the binary random dynamic hash with the help of key. At the same time of calculating the hash mapping address of plaintext, change the value of plaintext through bits scrambling, and then map it to the ciphertext space. This encryption method has strong randomness, and the design of hash functions and bits scrambling is flexible and diverse, which can constitute a set of encryption and decryption methods. After testing, the code evenness of the ciphertext obtained using this method is higher than that of the traditional method under some extreme conditions..
2021-09-21
Snow, Elijah, Alam, Mahbubul, Glandon, Alexander, Iftekharuddin, Khan.  2020.  End-to-End Multimodel Deep Learning for Malware Classification. 2020 International Joint Conference on Neural Networks (IJCNN). :1–7.
Malicious software (malware) is designed to cause unwanted or destructive effects on computers. Since modern society is dependent on computers to function, malware has the potential to do untold damage. Therefore, developing techniques to effectively combat malware is critical. With the rise in popularity of polymorphic malware, conventional anti-malware techniques fail to keep up with the rate of emergence of new malware. This poses a major challenge towards developing an efficient and robust malware detection technique. One approach to overcoming this challenge is to classify new malware among families of known malware. Several machine learning methods have been proposed for solving the malware classification problem. However, these techniques rely on hand-engineered features extracted from malware data which may not be effective for classifying new malware. Deep learning models have shown paramount success for solving various classification tasks such as image and text classification. Recent deep learning techniques are capable of extracting features directly from the input data. Consequently, this paper proposes an end-to-end deep learning framework for multimodels (henceforth, multimodel learning) to solve the challenging malware classification problem. The proposed model utilizes three different deep neural network architectures to jointly learn meaningful features from different attributes of the malware data. End-to-end learning optimizes all processing steps simultaneously, which improves model accuracy and generalizability. The performance of the model is tested with the widely used and publicly available Microsoft Malware Challenge Dataset and is compared with the state-of-the-art deep learning-based malware classification pipeline. Our results suggest that the proposed model achieves comparable performance to the state-of-the-art methods while offering faster training using end-to-end multimodel learning.
2022-10-20
Vishnu, B., Sajeesh, Sandeep R, Namboothiri, Leena Vishnu.  2020.  Enhanced Image Steganography with PVD and Edge Detection. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :949—953.
Steganography is the concept to conceal information and the data by embedding it as secret data into various digital medium in order to achieve higher security. To achieve this, many steganographic algorithms are already proposed. The ability of human eyes as well as invisibility remain the most important and prominent factor for the security and protection. The most commonly used security measure of data hiding within imagesYet it is ineffective against Steganalysis and lacks proper verifications. Thus the proposed system of Image Steganography using PVD (Pixel Value Differentiating) proves to be a better choice. It compresses and embeds data in images at the pixel value difference calculated between two consecutive pixels. To increase the security, another technique called Edge Detection is used along with PVD to embed data at the edges. Edge Detection techniques like Canny algorithm are used to find the edges in an image horizontally as well as vertically. The edge pixels in an image can be used to handle more bits of messages, because more pixel value shifts can be handled by the image edge area.
2021-10-12
Naveed, Sarah, Sultan, Aiman, Mansoor, Khwaja.  2020.  An Enhanced SIP Authentication Protocol for Preserving User Privacy. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
Owing to the advancements in communication media and devices all over the globe, there has arisen a dire need for to limit the alarming number of attacks targeting these and to enhance their security. Multiple techniques have been incorporated in different researches and various protocols and schemes have been put forward to cater security issues of session initiation protocol (SIP). In 2008, Qiu et al. presented a proposal for SIP authentication which while effective than many existing schemes, was still found vulnerable to many security attacks. To overcome those issues, Zhang et al. proposed an authentication protocol. This paper presents the analysis of Zhang et al. authentication scheme and concludes that their proposed scheme is susceptible to user traceablity. It also presents an improved SIP authentication scheme that eliminates the possibility of traceability of user's activities. The proposed scheme is also verified by contemporary verification tool, ProVerif and it is found to be more secure, efficient and practical than many similar SIP authetication scheme.
2021-10-04
Dong, Xianzhe, He, Xinyi, Liang, Tianlin, Shi, Dai, Tao, Dan.  2020.  Entropy based Security Rating Evaluation Scheme for Pattern Lock. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1–2.
To better protect users' privacy, various authentication mechanisms have been applied on smartphones. Android pattern lock has been widely used because it is easy to memorize, however, simple ones are more vulnerable to attack such as shoulder surfing attack. In this paper, we propose a security rating evaluation scheme based on pattern lock. In particular, an entropy function of a pattern lock can be calculated, which is decided by five kinds of attributes: size, length, angle, overlap and intersection for quantitative evaluation of pattern lock. And thus, the security rating thresholds will be determined by the distribution of entropy values. Finally, we design and develop an APP based on Android Studio, which is used to verify the effectiveness of our proposed security rating evaluation scheme.
2021-03-29
Kotra, A., Eldosouky, A., Sengupta, S..  2020.  Every Anonymization Begins with k: A Game-Theoretic Approach for Optimized k Selection in k-Anonymization. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1–6.
Privacy preservation is one of the greatest concerns when data is shared between different organizations. On the one hand, releasing data for research purposes is inevitable. On the other hand, sharing this data can jeopardize users' privacy. An effective solution, for the sharing organizations, is to use anonymization techniques to hide the users' sensitive information. One of the most popular anonymization techniques is k-Anonymization in which any data record is indistinguishable from at least k-1 other records. However, one of the fundamental challenges in choosing the value of k is the trade-off between achieving a higher privacy and the information loss associated with the anonymization. In this paper, the problem of choosing the optimal anonymization level for k-anonymization, under possible attacks, is studied when multiple organizations share their data to a common platform. In particular, two common types of attacks are considered that can target the k-anonymization technique. To this end, a novel game-theoretic framework is proposed to model the interactions between the sharing organizations and the attacker. The problem is formulated as a static game and its different Nash equilibria solutions are analytically derived. Simulation results show that the proposed framework can significantly improve the utility of the sharing organizations through optimizing the choice of k value.
2021-10-12
Sultana, Kazi Zakia, Codabux, Zadia, Williams, Byron.  2020.  Examining the Relationship of Code and Architectural Smells with Software Vulnerabilities. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :31–40.
Context: Security is vital to software developed for commercial or personal use. Although more organizations are realizing the importance of applying secure coding practices, in many of them, security concerns are not known or addressed until a security failure occurs. The root cause of security failures is vulnerable code. While metrics have been used to predict software vulnerabilities, we explore the relationship between code and architectural smells with security weaknesses. As smells are surface indicators of a deeper problem in software, determining the relationship between smells and software vulnerabilities can play a significant role in vulnerability prediction models. Objective: This study explores the relationship between smells and software vulnerabilities to identify the smells. Method: We extracted the class, method, file, and package level smells for three systems: Apache Tomcat, Apache CXF, and Android. We then compared their occurrences in the vulnerable classes which were reported to contain vulnerable code and in the neutral classes (non-vulnerable classes where no vulnerability had yet been reported). Results: We found that a vulnerable class is more likely to have certain smells compared to a non-vulnerable class. God Class, Complex Class, Large Class, Data Class, Feature Envy, Brain Class have a statistically significant relationship with software vulnerabilities. We found no significant relationship between architectural smells and software vulnerabilities. Conclusion: We can conclude that for all the systems examined, there is a statistically significant correlation between software vulnerabilities and some smells.
2021-05-03
Le, Son N., Srinivasan, Sudarshan K., Smith, Scott C..  2020.  Exploiting Dual-Rail Register Invariants for Equivalence Verification of NCL Circuits. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :21–24.
Equivalence checking is one of the most scalable and useful verification techniques in industry. NULL Convention Logic (NCL) circuits utilize dual-rail signals (i.e., two wires to represent one bit of DATA), where the wires are inverses of each other during a DATA wavefront. In this paper, a technique that exploits this invariant at NCL register boundaries is proposed to improve the efficiency of equivalence verification of NCL circuits.
2021-08-31
AlSabeh, Ali, Safa, Haidar, Bou-Harb, Elias, Crichigno, Jorge.  2020.  Exploiting Ransomware Paranoia For Execution Prevention. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Ransomware attacks cost businesses more than \$75 billion/year, and it is predicted to cost \$6 trillion/year by 2021. These numbers demonstrate the havoc produced by ransomware on a large number of sectors and urge security researches to tackle it. Several ransomware detection approaches have been proposed in the literature that interchange between static and dynamic analysis. Recently, ransomware attacks were shown to fingerprint the execution environment before they attack the system to counter dynamic analysis. In this paper, we exploit the behavior of contemporary ransomware to prevent its attack on real systems and thus avoid the loss of any data. We explore a set of ransomware-generated artifacts that are launched to sniff the surrounding. Furthermore, we design, develop, and evaluate an approach that monitors the behavior of a program by intercepting the called Windows APIs. Consequently, we determine in real-time if the program is trying to inspect its surrounding before the attack, and abort it immediately prior to the initiation of any malicious encryption or locking. Through empirical evaluations using real and recent ransomware samples, we study how ransomware and benign programs inspect the environment. Additionally, we demonstrate how to prevent ransomware with a low false positive rate. We make the developed approach available to the research community at large through GitHub to strongly promote cyber security defense operations and for wide-scale evaluations and enhancements.
2022-11-08
Yang, Shaofei, Liu, Longjun, Li, Baoting, Sun, Hongbin, Zheng, Nanning.  2020.  Exploiting Variable Precision Computation Array for Scalable Neural Network Accelerators. 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). :315–319.
In this paper, we present a flexible Variable Precision Computation Array (VPCA) component for different accelerators, which leverages a sparsification scheme for activations and a low bits serial-parallel combination computation unit for improving the efficiency and resiliency of accelerators. The VPCA can dynamically decompose the width of activation/weights (from 32bit to 3bit in different accelerators) into 2-bits serial computation units while the 2bits computing units can be combined in parallel computing for high throughput. We propose an on-the-fly compressing and calculating strategy SLE-CLC (single lane encoding, cross lane calculation), which could further improve performance of 2-bit parallel computing. The experiments results on image classification datasets show VPCA can outperforms DaDianNao, Stripes, Loom-2bit by 4.67×, 2.42×, 1.52× without other overhead on convolution layers.
2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components