Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2020-10-19
Hasan, Khondokar Fida, Kaur, Tarandeep, Hasan, Md. Mhedi, Feng, Yanming.  2019.  Cognitive Internet of Vehicles: Motivation, Layered Architecture and Security Issues. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). :1–6.
Over the past few years, we have experienced great technological advancements in the information and communication field, which has significantly contributed to reshaping the Intelligent Transportation System (ITS) concept. Evolving from the platform of a collection of sensors aiming to collect data, the data exchanged paradigm among vehicles is shifted from the local network to the cloud. With the introduction of cloud and edge computing along with ubiquitous 5G mobile network, it is expected to see the role of Artificial Intelligence (AI) in data processing and smart decision imminent. So as to fully understand the future automobile scenario in this verge of industrial revolution 4.0, it is necessary first of all to get a clear understanding of the cutting-edge technologies that going to take place in the automotive ecosystem so that the cyber-physical impact on transportation system can be measured. CIoV, which is abbreviated from Cognitive Internet of Vehicle, is one of the recently proposed architectures of the technological evolution in transportation, and it has amassed great attention. It introduces cloud-based artificial intelligence and machine learning into transportation system. What are the future expectations of CIoV? To fully contemplate this architecture's future potentials, and milestones set to achieve, it is crucial to understand all the technologies that leaned into it. Also, the security issues to meet the security requirements of its practical implementation. Aiming to that, this paper presents the evolution of CIoV along with the layer abstractions to outline the distinctive functional parts of the proposed architecture. It also gives an investigation of the prime security and privacy issues associated with technological evolution to take measures.
2020-08-03
Moradi, Ashkan, Venkategowda, Naveen K. D., Werner, Stefan.  2019.  Coordinated Data-Falsification Attacks in Consensus-based Distributed Kalman Filtering. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). :495–499.
This paper considers consensus-based distributed Kalman filtering subject to data-falsification attack, where Byzantine agents share manipulated data with their neighboring agents. The attack is assumed to be coordinated among the Byzantine agents and follows a linear model. The goal of the Byzantine agents is to maximize the network-wide estimation error while evading false-data detectors at honest agents. To that end, we propose a joint selection of Byzantine agents and covariance matrices of attack sequences to maximize the network-wide estimation error subject to constraints on stealthiness and the number of Byzantine agents. The attack strategy is then obtained by employing block-coordinate descent method via Boolean relaxation and backward stepwise based subset selection method. Numerical results show the efficiency of the proposed attack strategy in comparison with other naive and uncoordinated attacks.
2020-09-04
Sutton, Sara, Bond, Benjamin, Tahiri, Sementa, Rrushi, Julian.  2019.  Countering Malware Via Decoy Processes with Improved Resource Utilization Consistency. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :110—119.
The concept of a decoy process is a new development of defensive deception beyond traditional honeypots. Decoy processes can be exceptionally effective in detecting malware, directly upon contact or by redirecting malware to decoy I/O. A key requirement is that they resemble their real counterparts very closely to withstand adversarial probes by threat actors. To be usable, decoy processes need to consume only a small fraction of the resources consumed by their real counterparts. Our contribution in this paper is twofold. We attack the resource utilization consistency of decoy processes provided by a neural network with a heatmap training mechanism, which we find to be insufficiently trained. We then devise machine learning over control flow graphs that improves the heatmap training mechanism. A neural network retrained by our work shows higher accuracy and defeats our attacks without a significant increase in its own resource utilization.
2020-08-07
Liu, Xiaohu, Li, Laiqiang, Ma, Zhuang, Lin, Xin, Cao, Junyang.  2019.  Design of APT Attack Defense System Based on Dynamic Deception. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1655—1659.
Advanced Persistent Threat (APT) attack has the characteristics of complex attack means, long duration and great harmfulness. Based on the idea of dynamic deception, the paper proposed an APT defense system framework, and analyzed the deception defense process. The paper proposed a hybrid encryption communication mechanism based on socket, a dynamic IP address generation method based on SM4, a dynamic timing selection method based on Viterbi algorithm and a dynamic policy allocation mechanism based on DHCPv6. Tests show that the defense system can dynamically change and effectively defense APT attacks.
2020-06-03
Chopade, Mrunali, Khan, Sana, Shaikh, Uzma, Pawar, Renuka.  2019.  Digital Forensics: Maintaining Chain of Custody Using Blockchain. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :744—747.

The fundamental aim of digital forensics is to discover, investigate and protect an evidence, increasing cybercrime enforces digital forensics team to have more accurate evidence handling. This makes digital evidence as an important factor to link individual with criminal activity. In this procedure of forensics investigation, maintaining integrity of the evidence plays an important role. A chain of custody refers to a process of recording and preserving details of digital evidence from collection to presenting in court of law. It becomes a necessary objective to ensure that the evidence provided to the court remains original and authentic without tampering. Aim is to transfer these digital evidences securely using encryption techniques.

2020-10-26
Xu, Mengmeng, Zhu, Hai, Wang, Juanjuan, Xu, Hengzhou.  2019.  Dynamic and Disjoint Routing Mechanism for Protecting Source Location Privacy in WSNs. 2019 15th International Conference on Computational Intelligence and Security (CIS). :310–314.
In this paper, we investigate the protection mechanism of source location privacy, in which back-tracing attack is performed by an adversary. A dynamic and disjoint routing mechanism (DDRM) is proposed to achieve a strong protection for source location privacy in an energy-efficient manner. Specially, the selection of intermediate node renders the message transmission randomly and flexibly. By constructing k disjoint paths, an adversary could not receive sufficient messages to locate the source node. Simulation results illustrate the effectiveness of the proposed mechanism.
2020-05-08
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.
2020-09-18
Yudin, Oleksandr, Ziubina, Ruslana, Buchyk, Serhii, Frolov, Oleg, Suprun, Olha, Barannik, Natalia.  2019.  Efficiency Assessment of the Steganographic Coding Method with Indirect Integration of Critical Information. 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT). :36—40.
The presented method of encoding and steganographic embedding of a series of bits for the hidden message was first developed by modifying the digital platform (bases) of the elements of the image container. Unlike other methods, steganographic coding and embedding is accomplished by changing the elements of the image fragment, followed by the formation of code structures for the established structure of the digital representation of the structural elements of the image media image. The method of estimating quantitative indicators of embedded critical data is presented. The number of bits of the container for the developed method of steganographic coding and embedding of critical information is estimated. The efficiency of the presented method is evaluated and the comparative analysis of the value of the embedded digital data in relation to the method of weight coefficients of the discrete cosine transformation matrix, as well as the comparative analysis of the developed method of steganographic coding, compared with the Koch and Zhao methods to determine the embedded data resistance against attacks of various types. It is determined that for different values of the quantization coefficient, the most critical are the built-in containers of critical information, which are built by changing the part of the digital video data platform depending on the size of the digital platform and the number of bits of the built-in container.
2020-06-26
Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

2020-06-02
Zhou, Wei, Wang, Jin, Li, Lingzhi, Wang, Jianping, Lu, Kejie, Zhou, Xiaobo.  2019.  An Efficient Secure Coded Edge Computing Scheme Using Orthogonal Vector. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :100—107.

In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities. In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities.

2020-04-13
Wu, Qiong, Zhang, Haitao, Du, Peilun, Li, Ye, Guo, Jianli, He, Chenze.  2019.  Enabling Adaptive Deep Neural Networks for Video Surveillance in Distributed Edge Clouds. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). :525–528.
In the field of video surveillance, the demands of intelligent video analysis services based on Deep Neural Networks (DNNs) have grown rapidly. Although most existing studies focus on the performance of DNNs pre-deployed at remote clouds, the network delay caused by computation offloading from network cameras to remote clouds is usually long and sometimes unbearable. Edge computing can enable rich services and applications in close proximity to the network cameras. However, owing to the limited computing resources of distributed edge clouds, it is challenging to satisfy low latency and high accuracy requirements for all users, especially when the number of users surges. To address this challenge, we first formulate the intelligent video surveillance task scheduling problem that minimizes the average response time while meeting the performance requirements of tasks and prove that it is NP-hard. Second, we present an adaptive DNN model selection method to identify the most effective DNN model for each task by comparing the feature similarity between the input video segment and pre-stored training videos. Third, we propose a two-stage delay-aware graph searching approach that presents a beneficial trade-off between network delay and computing delay. Experimental results demonstrate the efficiency of our approach.
2020-11-16
Shen, N., Yeh, J., Chen, C., Chen, Y., Zhang, Y..  2019.  Ensuring Query Completeness in Outsourced Database Using Order-Preserving Encryption. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :776–783.
Nowadays database outsourcing has become business owners' preferred option and they are benefiting from its flexibility, reliability, and low cost. However, because database service providers cannot always be fully trusted and data owners will no longer have a direct control over their own data, how to make the outsourced data secure becomes a hot research topic. From the data integrity protection aspect, the client wants to make sure the data returned is correct, complete, and up-to-date. Previous research work in literature put more efforts on data correctness, while data completeness is still a challenging problem to solve. There are some existing works that tried to protect the completeness of data. Unfortunately, these solutions were considered not fully solving the problem because of their high communication or computation overhead. The implementations and limitations of existing works will be further discussed in this paper. From the data confidentiality protection aspect, order-preserving encryption (OPE) is a widely used encryption scheme in protecting data confidentiality. It allows the client to perform range queries and some other operations such as GROUP BY and ORDER BY over the OPE encrypted data. Therefore, it is worthy to develop a solution that allows user to verify the query completeness for an OPE encrypted database so that both data confidentiality and completeness are both protected. Inspired by this motivation, we propose a new data completeness protecting scheme by inserting fake tuples into databases. Both the real and fake tuples are OPE encrypted and thus the cloud server cannot distinguish among them. While our new scheme is much more efficient than all existing approaches, the level of security protection remains the same.
2020-06-08
Elhassani, Mustapha, Boulbot, Aziz, Chillali, Abdelhakim, Mouhib, Ali.  2019.  Fully homomorphic encryption scheme on a nonCommutative ring R. 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). :1–4.
This article is an introduction to a well known problem on the ring Fq[e] where e3=e2: Fully homomorphic encryption scheme. In this paper, we introduce a new diagram of encryption based on the conjugate problem on Fq[e] , (ESR(Fq[e])).
2020-11-30
Hilt, V., Sparks, K..  2019.  Future edge clouds. Bell Labs Technical Journal. 24:1–17.
Widespread deployment of centralized clouds has changed the way internet services are developed, deployed and operated. Centralized clouds have substantially extended the market opportunities for online services, enabled new entities to create and operate internet-scale services, and changed the way traditional companies run their operations. However, there are types of services that are unsuitable for today's centralized clouds such as highly interactive virtual and augmented reality (VR/AR) applications, high-resolution gaming, virtualized RAN, mass IoT data processing and industrial robot control. They can be broadly categorized as either latency-sensitive network functions, latency-sensitive applications, and/or high-bandwidth services. What these basic functions have in common is the need for a more distributed cloud infrastructure—an infrastructure we call edge clouds. In this paper, we examine the evolution of clouds, and edge clouds especially, and look at the developing market for edge clouds and what developments are required in networking, hardware and software to support them.
2020-03-18
Van, Hao, Nguyen, Huyen N., Hewett, Rattikorn, Dang, Tommy.  2019.  HackerNets: Visualizing Media Conversations on Internet of Things, Big Data, and Cybersecurity. 2019 IEEE International Conference on Big Data (Big Data). :3293–3302.
The giant network of Internet of Things establishes connections between smart devices and people, with protocols to collect and share data. While the data is expanding at a fast pace in this era of Big Data, there are growing concerns about security and privacy policies. In the current Internet of Things ecosystems, at the intersection of the Internet of Things, Big Data, and Cybersecurity lies the subject that attracts the most attention. In aiding users in getting an adequate understanding, this paper introduces HackerNets, an interactive visualization for emerging topics in the crossing of IoT, Big Data, and Cybersecurity over time. To demonstrate the effectiveness and usefulness of HackerNets, we apply and evaluate the technique on the dataset from the social media platform.
2020-06-26
Padmashree, M G, Arunalatha, J S, Venugopal, K R.  2019.  HSSM: High Speed Split Multiplier for Elliptic Curve Cryptography in IoT. 2019 Fifteenth International Conference on Information Processing (ICINPRO). :1—5.

Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].

2020-03-23
Alzahrani, Abdulrahman, Alshahrani, Hani, Alshehri, Ali, Fu, Huirong.  2019.  An Intelligent Behavior-Based Ransomware Detection System For Android Platform. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :28–35.

Malware variants exhibit polymorphic attacks due to the tremendous growth of the present technologies. For instance, ransomware, an astonishingly growing set of monetary-gain threats in the recent years, is peculiarized as one of the most treacherous cyberthreats against innocent individuals and businesses by locking their devices and/or encrypting their files. Many proposed attempts have been introduced by cybersecurity researchers aiming at mitigating the epidemic of the ransomware attacks. However, this type of malware is kept refined by utilizing new evasion techniques, such as sophisticated codes, dynamic payloads, and anti-emulation techniques, in order to survive against detection systems. This paper introduces RanDetector, a new automated and lightweight system for detecting ransomware applications in Android platform based on their behavior. In particular, this detection system investigates the appearance of some information that is related to ransomware operations in an inspected application before integrating some supervised machine learning models to classify the application. RanDetector is evaluated and tested on a dataset of more 450 applications, including benign and ransomware. Hence, RanDetector has successfully achieved more that 97.62% detection rate with nearly zero false positive.

2020-10-19
Peng, Ruxiang, Li, Weishi, Yang, Tao, Huafeng, Kong.  2019.  An Internet of Vehicles Intrusion Detection System Based on a Convolutional Neural Network. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1595–1599.
With the continuous development of the Internet of Vehicles, vehicles are no longer isolated nodes, but become a node in the car network. The open Internet will introduce traditional security issues into the Internet of Things. In order to ensure the safety of the networked cars, we hope to set up an intrusion detection system (IDS) on the vehicle terminal to detect and intercept network attacks. In our work, we designed an intrusion detection system for the Internet of Vehicles based on a convolutional neural network, which can run in a low-powered embedded vehicle terminal to monitor the data in the car network in real time. Moreover, for the case of packet encryption in some car networks, we have also designed a separate version for intrusion detection by analyzing the packet header. Experiments have shown that our system can guarantee high accuracy detection at low latency for attack traffic.
2020-11-02
Mohsen, Y., Hamdy, M., Shaaban, E..  2019.  Key distribution protocol for Identity Hiding in MANETs. 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). :245–252.
Mobile Ad-hoc Networks (MANETs) are formed when a group of mobile nodes, communicate through wireless links in the absence of central administration. These features make them more vulnerable to several attacks like identity spoofing which leads to identity disclosure. Providing anonymity and privacy for identity are critical issues, especially when the size of such networks scales up. to avoid the centralization problem for key distribution in MANETs. This paper proposes a key distribution scheme for clustered ad-hoc networks. The network is divided into groups of clusters, and each cluster head is responsible for distributing periodically updated security keys among cluster members, for protecting privacy through encryption. Also, an authentication scheme is proposed to ensure the confidentiality of new members to the cluster. The simulation study proves the effectiveness of the proposed scheme in terms of availability and overhead. It scales well for high dense networks and gives less packet drop rate compared to its centralized counterpart in the presence of malicious nodes.
2020-04-06
Chin, Paul, Cao, Yuan, Zhao, Xiaojin, Zhang, Leilei, Zhang, Fan.  2019.  Locking Secret Data in the Vault Leveraging Fuzzy PUFs. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.

Physical Unclonable Functions (PUFs) are considered as an attractive low-cost security anchor. The unique features of PUFs are dependent on the Nanoscale variations introduced during the manufacturing variations. Most PUFs exhibit an unreliability problem due to aging and inherent sensitivity to the environmental conditions. As a remedy to the reliability issue, helper data algorithms are used in practice. A helper data algorithm generates and stores the helper data in the enrollment phase in a secure environment. The generated helper data are used then for error correction, which can transform the unique feature of PUFs into a reproducible key. The key can be used to encrypt secret data in the security scheme. In contrast, this work shows that the fuzzy PUFs can be used to secret important data directly by an error-tolerant protocol without the enrollment phase and error-correction algorithm. In our proposal, the secret data is locked in a vault leveraging the unique fuzzy pattern of PUF. Although the noise exists, the data can then be released only by this unique PUF. The evaluation was performed on the most prominent intrinsic PUF - DRAM PUF. The test results demonstrate that our proposal can reach an acceptable reconstruction rate in various environment. Finally, the security analysis of the new proposal is discussed.

2020-09-18
Yao, Bing, Zhao, Meimei, Mu, Yarong, Sun, Yirong, Zhang, Xiaohui, Zhang, Mingjun, Yang, Sihua.  2019.  Matrices From Topological Graphic Coding of Network Security. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1992—1996.
Matrices as mathematical models have been used in each branch of scientific fields for hundred years. We propose a new type of matrices, called topological coding matrices (Topcode-matrices). Topcode-matrices show us the following advantages: Topcode-matrices can be saved in computer easily and run quickly in computation; since a Topcode-matrix corresponds two or more Topsnut-gpws, so Topcode-matrices can be used to encrypt networks such that the encrypted networks have higher security; Topcode-matrices can be investigated and applied by people worked in more domains; Topcode-matrices can help us to form new operations, new parameters and new topics of graph theory, such as vertex/edge splitting operations and connectivities of graphs. Several properties and applications on Topcode-matrices, and particular Topcode-matrices, as well as unknown problems are introduced.
2020-06-19
Mundra, Saloni, Sujata, Mitra, Suman K..  2019.  Modular Facial Expression Recognition on Noisy Data Using Robust PCA. 2019 IEEE 16th India Council International Conference (INDICON). :1—4.
2020-06-02
Krawec, Walter O..  2019.  Multi-Mediated Semi-Quantum Key Distribution. 2019 IEEE Globecom Workshops (GC Wkshps). :1—6.

A semi-quantum key distribution (SQKD) protocol allows two users A and B to establish a shared secret key that is secure against an all-powerful adversary E even when one of the users (e.g., B) is semi-quantum or classical in nature while the other is fully-quantum. A mediated SQKD protocol allows two semi-quantum users to establish a key with the help of an adversarial quantum server. We introduce the concept of a multi-mediated SQKD protocol where two (or more) adversarial quantum servers are used. We construct a new protocol in this model and show how it can withstand high levels of quantum noise, though at a cost to efficiency. We perform an information theoretic security analysis and, along the way, prove a general security result applicable to arbitrary MM-SQKD protocols. Finally, a comparison is made to previous (S)QKD protocols.

2020-05-22
Ahsan, Ramoza, Bashir, Muzammil, Neamtu, Rodica, Rundensteiner, Elke A., Sarkozy, Gabor.  2019.  Nearest Neighbor Subsequence Search in Time Series Data. 2019 IEEE International Conference on Big Data (Big Data). :2057—2066.
Continuous growth in sensor data and other temporal sequence data necessitates efficient retrieval and similarity search support on these big time series datasets. However, finding exact similarity results, especially at the granularity of subsequences, is known to be prohibitively costly for large data sets. In this paper, we thus propose an efficient framework for solving this exact subsequence similarity match problem, called TINN (TIme series Nearest Neighbor search). Exploiting the range interval diversity properties of time series datasets, TINN captures similarity at two levels of abstraction, namely, relationships among subsequences within each long time series and relationships across distinct time series in the data set. These relationships are compactly organized in an augmented relationship graph model, with the former relationships encoded in similarity vectors at TINN nodes and the later captured by augmented edge types in the TINN Graph. Query processing strategy deploy novel pruning techniques on the TINN Graph, including node skipping, vertical and horizontal pruning, to significantly reduce the number of time series as well as subsequences to be explored. Comprehensive experiments on synthetic and real world time series data demonstrate that our TINN model consistently outperforms state-of-the-art approaches while still guaranteeing to retrieve exact matches.
2020-04-17
Bicakci, Kemal, Ak, Ihsan Kagan, Ozdemir, Betul Askin, Gozutok, Mesut.  2019.  Open-TEE is No Longer Virtual: Towards Software-Only Trusted Execution Environments Using White-Box Cryptography. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :177—183.

Trusted Execution Environments (TEEs) provide hardware support to isolate the execution of sensitive operations on mobile phones for improved security. However, they are not always available to use for application developers. To provide a consistent user experience to those who have and do not have a TEE-enabled device, we could get help from Open-TEE, an open-source GlobalPlatform (GP)-compliant software TEE emulator. However, Open-TEE does not offer any of the security properties hardware TEEs have. In this paper, we propose WhiteBox-TEE which integrates white-box cryptography with Open-TEE to provide better security while still remaining complaint with GP TEE specifications. We discuss the architecture, provisioning mechanism, implementation highlights, security properties and performance issues of WhiteBox-TEE and propose possible revisions to TEE specifications to have better use of white-box cryptography in software-only TEEs.