Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2020-01-21
Kolokotronis, Nicholas, Brotsis, Sotirios, Germanos, Georgios, Vassilakis, Costas, Shiaeles, Stavros.  2019.  On Blockchain Architectures for Trust-Based Collaborative Intrusion Detection. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:21–28.
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such attacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.
2020-09-18
Hao, Jie, Shum, Kenneth W., Xia, Shu-Tao, Yang, Yi-Xian.  2019.  Classification of Optimal Ternary (r, δ)-Locally Repairable Codes Attaining the Singleton-like Bound. 2019 IEEE International Symposium on Information Theory (ISIT). :2828—2832.
In a linear code, a code symbol with (r, δ)-locality can be repaired by accessing at most r other code symbols in case of at most δ - 1 erasures. A q-ary (n, k, r, δ) locally repairable codes (LRC) in which every code symbol has (r, δ)-locality is said to be optimal if it achieves the Singleton-like bound derived by Prakash et al.. In this paper, we study the classification of optimal ternary (n, k, r, δ)-LRCs (δ \textbackslashtextgreater 2). Firstly, we propose an upper bound on the minimum distance of optimal q-ary LRCs in terms of the field size. Then, we completely determine all the 6 classes of possible parameters with which optimal ternary (n, k, r, δ)-LRCs exist. Moreover, explicit constructions of all these 6 classes of optimal ternary LRCs are proposed in the paper.
2020-06-02
Ostrev, Dimiter.  2019.  Composable, Unconditionally Secure Message Authentication without any Secret Key. 2019 IEEE International Symposium on Information Theory (ISIT). :622—626.

We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context.

2020-09-18
Hong, Junho, Nuqui, Reynaldo F., Kondabathini, Anil, Ishchenko, Dmitry, Martin, Aaron.  2019.  Cyber Attack Resilient Distance Protection and Circuit Breaker Control for Digital Substations. IEEE Transactions on Industrial Informatics. 15:4332—4341.
This paper proposes new concepts for detecting and mitigating cyber attacks on substation automation systems by domain-based cyber-physical security solutions. The proposed methods form the basis of a distributed security domain layer that enables protection devices to collaboratively defend against cyber attacks at substations. The methods utilize protection coordination principles to cross check protection setting changes and can run real-time power system analysis to evaluate the impact of the control commands. The transient fault signature (TFS)-based cross-correlation coefficient algorithm has been proposed to detect the false sampled values data injection attack. The proposed functions were verified in a hardware-in-the-loop (HIL) simulation using commercial relays and a real-time digital simulator (RTDS). Various types of cyber intrusions are tested using this test bed to evaluate the consequences and impacts of cyber attacks to power grid as well as to validate the performance of the proposed research-grade cyber attack mitigation functions.
2020-02-18
Liu, Ying, He, Qiang, Zheng, Dequan, Zhang, Mingwei, Chen, Feifei, Zhang, Bin.  2019.  Data Caching Optimization in the Edge Computing Environment. 2019 IEEE International Conference on Web Services (ICWS). :99–106.

With the rapid increase in the use of mobile devices in people's daily lives, mobile data traffic is exploding in recent years. In the edge computing environment where edge servers are deployed around mobile users, caching popular data on edge servers can ensure mobile users' fast access to those data and reduce the data traffic between mobile users and the centralized cloud. Existing studies consider the data cache problem with a focus on the reduction of network delay and the improvement of mobile devices' energy efficiency. In this paper, we attack the data caching problem in the edge computing environment from the service providers' perspective, who would like to maximize their venues of caching their data. This problem is complicated because data caching produces benefits at a cost and there usually is a trade-off in-between. In this paper, we formulate the data caching problem as an integer programming problem, and maximizes the revenue of the service provider while satisfying a constraint for data access latency. Extensive experiments are conducted on a real-world dataset that contains the locations of edge servers and mobile users, and the results reveal that our approach significantly outperform the baseline approaches.

2020-02-26
Rahman, Obaid, Quraishi, Mohammad Ali Gauhar, Lung, Chung-Horng.  2019.  DDoS Attacks Detection and Mitigation in SDN Using Machine Learning. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:184–189.

Software Defined Networking (SDN) is very popular due to the benefits it provides such as scalability, flexibility, monitoring, and ease of innovation. However, it needs to be properly protected from security threats. One major attack that plagues the SDN network is the distributed denial-of-service (DDoS) attack. There are several approaches to prevent the DDoS attack in an SDN network. We have evaluated a few machine learning techniques, i.e., J48, Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), to detect and block the DDoS attack in an SDN network. The evaluation process involved training and selecting the best model for the proposed network and applying it in a mitigation and prevention script to detect and mitigate attacks. The results showed that J48 performs better than the other evaluated algorithms, especially in terms of training and testing time.

2020-03-27
Romagnoli, Raffaele, Krogh, Bruce H., Sinopoli, Bruno.  2019.  Design of Software Rejuvenation for CPS Security Using Invariant Sets. 2019 American Control Conference (ACC). :3740–3745.

Software rejuvenation has been proposed as a strategy to protect cyber-physical systems (CSPs) against unanticipated and undetectable cyber attacks. The basic idea is to refresh the system periodically with a secure and trusted copy of the online software so as to eliminate all effects of malicious modifications to the run-time code and data. This paper considers software rejuvenation design from a control-theoretic perspective. Invariant sets for the Lyapunov function for the safety controller are used to derive bounds on the time that the CPS can operate in mission control mode before the software must be refreshed. With these results it can be guaranteed that the CPS will remain safe under cyber attacks against the run-time system. The approach is illustrated using simulation of the nonlinear dynamics of a quadrotor system. The concluding section discusses directions for further research.

2020-02-17
Yee, George O. M..  2019.  Designing Good Security Metrics. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:580–585.

This paper begins with an introduction to security metrics, describing the need for security metrics, followed by a discussion of the nature of security metrics, including the challenges found with some security metrics used in the past. The paper then discusses what makes a good security metric and proposes a rigorous step-by-step method that can be applied to design good security metrics, and to test existing security metrics to see if they are good metrics. Application examples are included to illustrate the method.

2020-04-17
Jmila, Houda, Blanc, Gregory.  2019.  Designing Security-Aware Service Requests for NFV-Enabled Networks. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—9.

Network Function Virtualization (NFV) is a recent concept where virtualization enables the shift from network functions (e.g., routers, switches, load-balancers, proxies) on specialized hardware appliances to software images running on all-purpose, high-volume servers. The resource allocation problem in the NFV environment has received considerable attention in the past years. However, little attention was paid to the security aspects of the problem in spite of the increasing number of vulnerabilities faced by cloud-based applications. Securing the services is an urgent need to completely benefit from the advantages offered by NFV. In this paper, we show how a network service request, composed of a set of service function chains (SFC) should be modified and enriched to take into consideration the security requirements of the supported service. We examine the well-known security best practices and propose a two-step algorithm that extends the initial SFC requests to a more complex chaining model that includes the security requirements of the service.

2020-05-15
Chaves, Cesar G., Azad, Siavoosh Payandeh, Sepulveda, Johanna, Hollstein, Thomas.  2019.  Detecting and Mitigating Low-and-Slow DoS Attacks in NoC-based MPSoCs. 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :82—89.
As Multi-Processor Systems-on-Chip (MPSoCs) permeate the Internet by powering IoT devices, they are exposed to new threats. One major threat is Denial-of-Service (DoS) attacks, which make communication services slow or even unavailable. While mainly studied on desktop and server systems, some DoS attacks on mobile devices and Network-on-Chip (NoC) platforms have also been considered. In the context of NoC-based MPSoC architectures, previous works have explored flooding DoS attacks and their countermeasures, however, these protection techniques are ineffective to mitigate new DoS attacks. Recently, a shift of the network attack paradigm from flooding DoS to Low-and-Slow DoS has been observed. To this end, we present two contributions. First, we demonstrate, for the first time, the impact of Low-and-Slow DoS attacks in NoC environments. Second, we propose a lightweight online monitor able to detect and mitigate these attacks. Results show that our countermeasure is feasible and that it effectively mitigates this new attack. Moreover, since the monitors are placed at the entry points of the network, both, single- and multi-source attacks can be neutralized.
2020-06-02
Kibloff, David, Perlaza, Samir M., Wang, Ligong.  2019.  Embedding Covert Information on a Given Broadcast Code. 2019 IEEE International Symposium on Information Theory (ISIT). :2169—2173.

Given a code used to send a message to two receivers through a degraded discrete memoryless broadcast channel (DM-BC), the sender wishes to alter the codewords to achieve the following goals: (i) the original broadcast communication continues to take place, possibly at the expense of a tolerable increase of the decoding error probability; and (ii) an additional covert message can be transmitted to the stronger receiver such that the weaker receiver cannot detect the existence of this message. The main results are: (a) feasibility of covert communications is proven by using a random coding argument for general DM-BCs; and (b) necessary conditions for establishing covert communications are described and an impossibility (converse) result is presented for a particular class of DM-BCs. Together, these results characterize the asymptotic fundamental limits of covert communications for this particular class of DM-BCs within an arbitrarily small gap.

2020-02-17
Belej, Olexander, Nestor, Natalia, Polotai, Orest, Sadeckii, Jan.  2019.  Features of Application of Data Transmission Protocols in Wireless Networks of Sensors. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :317–322.
This article discusses the vulnerabilities and complexity of designing secure IoT-solutions, and then presents proven approaches to protecting devices and gateways. Specifically, security mechanisms such as device authentication (including certificate-based authentication), device authentication, and application a verification of identification are described. The authors consider a protocol of message queue telemetry transport for speech and sensor networks on the Internet, its features, application variants, and characteristic procedures. The principle of "publishersubscriber" is considered. An analysis of information elements and messages is carried out. The urgency of the theme is due to the rapid development of "publisher-subscriber" architecture, for which the protocol is most characteristic.
2020-06-02
Gagliano, Allison, Krawec, Walter O., Iqbal, Hasan.  2019.  From Classical to Semi-Quantum Secure Communication. 2019 IEEE International Symposium on Information Theory (ISIT). :1707—1711.

In this work we introduce a novel QKD protocol capable of smoothly transitioning, via a user-tuneable parameter, from classical to semi-quantum in order to help understand the effect of quantum communication resources on secure key distribution. We perform an information theoretic security analysis of this protocol to determine what level of "quantumness" is sufficient to achieve security, and we discover some rather interesting properties of this protocol along the way.

2020-06-12
Li, Wenyue, Yin, Jihao, Han, Bingnan, Zhu, Hongmei.  2019.  Generative Adversarial Network with Folded Spectrum for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :883—886.

Hyperspectral image (HSIs) with abundant spectral information but limited labeled dataset endows the rationality and necessity of semi-supervised spectral-based classification methods. Where, the utilizing approach of spectral information is significant to classification accuracy. In this paper, we propose a novel semi-supervised method based on generative adversarial network (GAN) with folded spectrum (FS-GAN). Specifically, the original spectral vector is folded to 2D square spectrum as input of GAN, which can generate spectral texture and provide larger receptive field over both adjacent and non-adjacent spectral bands for deep feature extraction. The generated fake folded spectrum, the labeled and unlabeled real folded spectrum are then fed to the discriminator for semi-supervised learning. A feature matching strategy is applied to prevent model collapse. Extensive experimental comparisons demonstrate the effectiveness of the proposed method.

2020-03-18
Yang, Yunxue, Ji, Guohua, Yang, Zhenqi, Xue, Shengjun.  2019.  Incentive Contract for Cybersecurity Information Sharing Considering Monitoring Signals. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :507–512.
Cyber insurance is a viable method for cyber risk transfer. However, the cyber insurance faces critical challenges, the most important of which is lack of statistical data. In this paper, we proposed an incentive model considering monitoring signals for cybersecurity information haring based on the principal-agent theory. We studied the effect of monitoring signals on increasing the rationality of the incentive contract and reducing moral hazard in the process of cybersecurity information sharing, and analyzed factors influencing the effectiveness of the incentive contract. We show that by introducing monitoring signals, the insurer can collect more information about the effort level of the insured, and encourage the insured to share cybersecurity information based on the information sharing output and monitoring signals of the effort level, which can not only reduce the blindness of incentive to the insured in the process of cybersecurity information sharing, but also reduce moral hazard.
2020-01-21
Zhang, Jiange, Chen, Yue, Yang, Kuiwu, Zhao, Jian, Yan, Xincheng.  2019.  Insider Threat Detection Based on Adaptive Optimization DBN by Grid Search. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

Aiming at the problem that one-dimensional parameter optimization in insider threat detection using deep learning will lead to unsatisfactory overall performance of the model, an insider threat detection method based on adaptive optimization DBN by grid search is designed. This method adaptively optimizes the learning rate and the network structure which form the two-dimensional grid, and adaptively selects a set of optimization parameters for threat detection, which optimizes the overall performance of the deep learning model. The experimental results show that the method has good adaptability. The learning rate of the deep belief net is optimized to 0.6, the network structure is optimized to 6 layers, and the threat detection rate is increased to 98.794%. The training efficiency and the threat detection rate of the deep belief net are improved.

2020-11-02
Zhang, Z., Xie, X..  2019.  On the Investigation of Essential Diversities for Deep Learning Testing Criteria. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). :394–405.

Recent years, more and more testing criteria for deep learning systems has been proposed to ensure system robustness and reliability. These criteria were defined based on different perspectives of diversity. However, there lacks comprehensive investigation on what are the most essential diversities that should be considered by a testing criteria for deep learning systems. Therefore, in this paper, we conduct an empirical study to investigate the relation between test diversities and erroneous behaviors of deep learning models. We define five metrics to reflect diversities in neuron activities, and leverage metamorphic testing to detect erroneous behaviors. We investigate the correlation between metrics and erroneous behaviors. We also go further step to measure the quality of test suites under the guidance of defined metrics. Our results provided comprehensive insights on the essential diversities for testing criteria to exhibit good fault detection ability.

2020-06-12
Jiang, Ruituo, Li, Xu, Gao, Ang, Li, Lixin, Meng, Hongying, Yue, Shigang, Zhang, Lei.  2019.  Learning Spectral and Spatial Features Based on Generative Adversarial Network for Hyperspectral Image Super-Resolution. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :3161—3164.

Super-resolution (SR) of hyperspectral images (HSIs) aims to enhance the spatial/spectral resolution of hyperspectral imagery and the super-resolved results will benefit many remote sensing applications. A generative adversarial network for HSIs super-resolution (HSRGAN) is proposed in this paper. Specifically, HSRGAN constructs spectral and spatial blocks with residual network in generator to effectively learn spectral and spatial features from HSIs. Furthermore, a new loss function which combines the pixel-wise loss and adversarial loss together is designed to guide the generator to recover images approximating the original HSIs and with finer texture details. Quantitative and qualitative results demonstrate that the proposed HSRGAN is superior to the state of the art methods like SRCNN and SRGAN for HSIs spatial SR.

2019-12-30
Toliupa, Serhiy, Tereikovskiy, Ihor, Dychka, Ivan, Tereikovska, Liudmyla, Trush, Alexander.  2019.  The Method of Using Production Rules in Neural Network Recognition of Emotions by Facial Geometry. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :323–327.
The article is devoted to the improvement of neural network means of recognition of emotions on human geometry, which are defined for use in information systems of general purpose. It is shown that modern means of emotional recognition are based on the usual networks of critical disadvantage, because there is a lack of accuracy of recognition under the influence of purchased, characteristic of general-purpose information systems. It is determined that the above remarks relate to the turning of the face and the size of the image. A typical approach to overcoming this disadvantage through training is unacceptable for all protection options that are inappropriate for reasons of duration and compilation of the required training sample. It is proposed to increase the accuracy of recognition by submitting an expert data model to the neural network. An appropriate method for representing expert knowledge is developed. A feature of the method is the use of productive rules and the PNN neural network. Experimental verification of the developed solutions has been carried out. The obtained results allow to increase the efficiency of the termination and disclosure of the set of age networks, the characteristics of which are not presented in the registered statistical data.
2020-03-09
Zhai, Liming, Wang, Lina, Ren, Yanzhen.  2019.  Multi-domain Embedding Strategies for Video Steganography by Combining Partition Modes and Motion Vectors. 2019 IEEE International Conference on Multimedia and Expo (ICME). :1402–1407.
Digital video has various types of entities, which are utilized as embedding domains to hide messages in steganography. However, nearly all video steganography uses only one type of embedding domain, resulting in limited embedding capacity and potential security risks. In this paper, we firstly propose to embed in multi-domains for video steganography by combining partition modes (PMs) and motion vectors (MVs). The multi-domain embedding (MDE) aims to spread the modifications to different embedding domains for achieving higher undetectability. The key issue of MDE is the interactions of entities across domains. To this end, we design two MDE strategies, which hide data in PM domain and MV domain by sequential embedding and simultaneous embedding respectively. These two strategies can be applied to existing steganography within a distortion-minimization framework. Experiments show that the MDE strategies achieve a significant improvement in security performance against targeted steganalysis and fusion based steganalysis.
2020-01-21
Xu, Lei, Yuan, Xingliang, Steinfeld, Ron, Wang, Cong, Xu, Chungen.  2019.  Multi-Writer Searchable Encryption: An LWE-Based Realization and Implementation. Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security. :122–133.
Multi-Writer Searchable Encryption, also known as public-key encryption with keyword search(PEKS), serves a wide spectrum of data sharing applications. It allows users to search over encrypted data encrypted via different keys. However, most of the existing PEKS schemes are built on classic security assumptions, which are proven to be untenable to overcome the threats of quantum computers. To address the above problem, in this paper, we propose a lattice-based searchable encryption scheme from the learning with errors (LWE) hardness assumption. Specifically, we observe that the keys of each user in a basic scheme are composed of large-sized matrices and basis of the lattice. To reduce the complexity of key management, our scheme is designed to enable users to directly use their identity for data encryption. We present several optimization techniques for implementation to make our design nearly practical. For completeness, we conduct rigorous security, complexity, and parameter analysis on our scheme, and perform comprehensive evaluations at a commodity machine. With a scenario of 100 users, the cost of key generation for each user is 125s, and the cost of searching a document with 1000 keywords is 13.4ms.
2020-08-10
Kim, Byoungchul, Jung, Jaemin, Han, Sangchul, Jeon, Soyeon, Cho, Seong-je, Choi, Jongmoo.  2019.  A New Technique for Detecting Android App Clones Using Implicit Intent and Method Information. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :478–483.
Detecting repackaged apps is one of the important issues in the Android ecosystem. Many attackers usually reverse engineer a legitimate app, modify or embed malicious codes into the app, repackage and distribute it in the online markets. They also employ code obfuscation techniques to hide app cloning or repackaging. In this paper, we propose a new technique for detecting repackaged Android apps, which is robust to code obfuscation. The technique analyzes the similarity of Android apps based on the method call information of component classes that receive implicit intents. We developed a tool Calldroid that implemented the proposed technique, and evaluated it on apps transformed using well-known obfuscators. The evaluation results showed that the proposed technique can effectively detect repackaged apps.
2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
2020-02-18
Griffioen, Paul, Weerakkody, Sean, Sinopoli, Bruno.  2019.  An Optimal Design of a Moving Target Defense for Attack Detection in Control Systems. 2019 American Control Conference (ACC). :4527–4534.
In this paper, we consider the problem of designing system parameters to improve detection of attacks in control systems. Specifically, we study control systems which are vulnerable to integrity attacks on sensors and actuators. We aim to defend against strong model aware adversaries that can read and modify all sensors and actuators. Previous work has proposed a moving target defense for detecting integrity attacks on control systems. Here, an authenticating subsystem with time-varying dynamics coupled to the original plant is introduced. Due to this coupling, an attack on the original system will affect the authenticating subsystem and in turn be revealed by a set of sensors measuring the extended plant. Moreover, the time-varying dynamics of the extended plant act as a moving target, preventing an adversary from developing an effective adaptive attack strategy. Previous work has failed to consider the design of the time-varying system matrices and as such provides little in terms of guidelines for implementation in real systems. This paper proposes two optimization problems for designing these matrices. The first designs the auxiliary actuators to maximize detection performance while the second designs the coupling matrices to maximize system estimation performance. Numerical examples are presented that validate our approach.
2020-03-02
Wang, Qing, Wang, Zengfu, Guo, Jun, Tahchi, Elias, Wang, Xinyu, Moran, Bill, Zukerman, Moshe.  2019.  Path Planning of Submarine Cables. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
Submarine optical-fiber cables are key components in the conveying of Internet data, and their failures have costly consequences. Currently, there are over a million km of such cables empowering the Internet. To carry the ever-growing Internet traffic, additional 100,000s of km of cables will be needed in the next few years. At an average cost of \$28,000 per km, this entails investments of billions of dollars. In current industry practice, cable paths are planned manually by experts. This paper surveys our recent work on cable path planning algorithms, where we use several methods to plan cable paths taking account of a range of cable risk factors in addition to cable costs. Two methods, namely, the fast marching method (FMM) and the Dijkstra's algorithm are applied here to long-haul cable path design in a new geographical region. A specific example is given to demonstrate the benefit of the FMM-based method in terms of the better path planning solutions over the Dijkstra's algorithm.