Biblio
In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.
The Web ecosystem has been evolving over the past years and new Internet protocols, namely HTTP/2 over TLS/TCP and QUIC/UDP, are now used to deliver Web contents. Similarly, CDNs (Content Delivery Network) are deployed worldwide, caching contents close to end-users to optimize web browsing quality. We present in this paper an analysis of the influence of the Internet protocols and CDN on the Top 10,000 Alexa websites, based on a 12-month measurement campaign (from April 2018 to April 2019) performed via our tool Web View [1]. Part of our measurements are made public, represented on a monitoring website1, showing the results for the Top 50 Alexa Websites plus few specific websites and 8 french websites, suggested by the French Agency in charge of regulating telecommunications. Our analysis of this long-term measurement campaign allows to better analyze the delivery of public websites. For instance, it shows that even if some argue that QUIC optimizes the quality, it is not observed in the real-life since QUIC is not largely deployed. Our method for analyzing CDN delivery in the Web browsing allows us to evaluate its influence, which is important since their usage can decrease the web pages' loading time, on average 43.1% with HTTP/2 and 38.5% with QUIC, when requesting a second time the same home page.
The server is an important for storing data, collected during the diagnostics of Smart Business Center (SBC) as a subsystem of Industrial Internet of Things including sensors, network equipment, components for start and storage of monitoring programs and technical diagnostics. The server is exposed most often to various kind of attacks, in particular, aimed at processor, interface system, random access memory. The goal of the paper is analyzing the methods of the SBC server protection from malicious actions, as well as the development and investigation of the Markov model of the server's functioning in the SBC network, taking into account the impact of DDoS-attacks.
Machine learning (ML) classifiers are vulnerable to adversarial examples. An adversarial example is an input sample which is slightly modified to induce misclassification in an ML classifier. In this work, we investigate white-box and grey-box evasion attacks to an ML-based malware detector and conduct performance evaluations in a real-world setting. We compare the defense approaches in mitigating the attacks. We propose a framework for deploying grey-box and black-box attacks to malware detection systems.
Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.
Routing protocols in wireless sensor network are vulnerable to various malicious security attacks that can degrade network performance and lifetime. This becomes more important in cluster routing protocols that is composed of multiple node and cluster head, such as low energy adaptive clustering hierarchy (LEACH) protocol. Namely, if an attack succeeds in failing the cluster head, then the entire set of nodes fail. Therefore, it is necessary to develop robust recovery schemes to overcome security attacks and recover packets at short times. Hence this paper proposes a detection and recovery scheme for selective forwarding attacks in wireless sensor networks using LEACH protocol. The proposed solution features near-instantaneous recovery times, without the requirement for feedback or retransmissions once an attack occurs.
As malware family classification methods, image-based classification methods have attracted much attention. Especially, due to the fast classification speed and the high classification accuracy, Convolutional Neural Network (CNN)-based malware family classification methods have been studied. However, previous studies on CNN-based classification methods focused only on improving the classification accuracy of malware families. That is, previous studies did not consider the cases that the accuracy of CNN-based malware classification methods can be decreased under the existence of adversarial attacks. In this paper, we analyze the robustness of various CNN-based malware family classification models under adversarial attacks. While adding imperceptible non-random perturbations to the input image, we measured how the accuracy of the CNN-based malware family classification model can be affected. Also, we showed the influence of three significant visualization parameters(i.e., the size of input image, dimension of input image, and conversion color of a special character)on the accuracy variation under adversarial attacks. From the evaluation results using the Microsoft malware dataset, we showed that even the accuracy over 98% of the CNN-based malware family classification method can be decreased to less than 7%.
In VANET, Sybil nodes generated by attackers cause serious damages to network protocols, resource allocation mechanisms, and reputation models. Other types of attacks can also be launched on the basis of Sybil attack, which bring more threats to VANET. To solve this problem, this paper proposes a Sybil nodes detection method based on RSSI sequence and vehicle driving matrix - RSDM. RSDM evaluates the difference between the RSSI sequence and the driving matrix by dynamic distance matching to detect Sybil nodes. Moreover, RSDM does not rely on VANET infrastructure, neighbor nodes or specific hardware. The experimental results show that RSDM performs well with a higher detection rate and a lower error rate.
Cyber security is a vital performance metric for networks. Wiretap attacks belong to passive attacks. It commonly exists in wired or wireless networks, where an eavesdropper steals useful information by wiretapping messages being shipped on network links. It seriously damages the confidentiality of communications. This paper proposed a secure network coding system architecture against wiretap attacks. It combines and collaborates network coding with cryptography technology. Some illustrating examples are given to show how to build such a system and prove its defense is much stronger than a system with a single defender, either network coding or cryptography. Moreover, the system is characterized by flexibility, simplicity, and easy to set up. Finally, it could be used for both deterministic and random network coding system.
The technological development of the energy sector also produced complex data. In this study, the relationship between smart grid and big data approaches have been investigated. After analyzing which areas of the smart grid system use big data technologies and technologies, big data technologies for detecting smart grid attacks have received attention. Big data analytics can produce efficient solutions and it is especially important to choose which algorithms and metrics to use. For this reason, an application prototype has been proposed that uses a big data method to detect attacks on the smart grid. The algorithm with high accuracy was determined to be 92% for random forests and 87% for decision trees.
With the development of the Internet, the network attack technology has undergone tremendous changes. The forms of network attack and defense have also changed, which are features in attacks are becoming more diverse, attacks are more widespread and traditional security protection methods are invalid. In recent years, with the development of software defined security, network anomaly detection technology and big data technology, these challenges have been effectively addressed. This paper proposes a data-driven software defined security architecture with core features including data-driven orchestration engine, scalable network anomaly detection module and security data platform. Based on the construction of the analysis layer in the security data platform, real-time online detection of network data can be realized by integrating network anomaly detection module and security data platform under software defined security architecture. Then, data-driven security business orchestration can be realized to achieve efficient, real-time and dynamic response to detected anomalies. Meanwhile, this paper designs a deep learning-based HTTP anomaly detection algorithm module and integrates it with data-driven software defined security architecture so that demonstrating the flow of the whole system.
Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy service such as a relational database engine to perform searches over encrypted data. The ease with which such schemes can be deployed on top of existing services makes them especially appealing in operational environments where encryption is needed but it is not feasible to replace large infrastructure components like databases or document management systems. Unfortunately all previously known approaches for efficiently searchable and easily deployable encryption are vulnerable to inference attacks where an adversary can use knowledge of the distribution of the data to recover the plaintext with high probability. We present a new efficiently searchable, easily deployable database encryption scheme that is provably secure against inference attacks even when used with real, low-entropy data. We implemented our constructions in Haskell and tested databases up to 10 million records showing our construction properly balances security, deployability and performance.